题目

有1~n一共n个数,n为偶数。小Q要把这n个数随机地两两配对。令每一对的权值为它们两个数的和。小Q想要知道这n/2对里最大的权值的期望是多少。请输出答案对10^9+7取模的值。

【输入】

一行一个正整数 N。

【输出】

一行一个整数,表示答案对10^9+7取模的值。

【输入样例】

4

【输出样例】

6

对于 20%的数据: 1 ≤ N ≤ 10。

对于 40%的数据: 1 ≤ N ≤ 2000。

对于 100%的数据: 1 ≤ N ≤500000。

分析

袁神博客

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const long long mod=1e9+;
long long c[];
inline long long pw(long long a,long long p){
a%=mod;
long long res=;
while(p){
if(p&)res=res*a%mod;
a=a*a%mod;
p/=;
}
return res;
}
int main(){
long long n,m,i,j,k,v,ans=,be=;
scanf("%lld",&n);
c[]=;
for(i=;i<=n/;i++)
c[i]=c[i-]*(i*-)%mod;
v=*n-;
for(i=n+;i<=v;i++){
long long low=(*n-i+)/;
long long now=pw(i-n,low)%mod*c[n/-low]%mod;
ans=(ans+(now-be+mod)%mod*i%mod)%mod;
be=now;
}
ans=ans*pw(c[n/],mod-)%mod;
cout<<ans<<endl;
return ;
}

qboimathtest1 t2 配对的更多相关文章

  1. 【BZOJ4205】卡牌配对

    Description 现在有一种卡牌游戏,每张卡牌上有三个属性值:A,B,C.把卡牌分为X,Y两类,分别有n1,n2张. 两张卡牌能够配对,当且仅当,存在至多一项属性值使得两张卡牌该项属性值互质,且 ...

  2. 5.12 省选模拟赛 T2 贪心 dp 搜索 差分

    LINK:T2 这题感觉很套路 但是不会写. 区间操作 显然直接使用dp不太行 直接爆搜也不太行复杂度太高. 容易想到差分 由于使得整个序列都为0 那么第一个数也要i差分前一个数 强行加一个0 然后 ...

  3. BZOJ 4205: 卡牌配对

    4205: 卡牌配对 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 173  Solved: 76[Submit][Status][Discuss] ...

  4. [Noip2016]蚯蚓 D2 T2 队列

    [Noip2016]蚯蚓 D2 T2 Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯 ...

  5. SDOI 2016 数字配对

    题目大意:给定n个数字以及每个数字的个数和权值,将满足条件的数字配对,使得总代价不小于0,且配对最多 最大费用最大流拆点,对于每个点,连一条由S到该点的边,容量为b,花费为0,再连一条到T的边 对于每 ...

  6. 【bzoj4514】 Sdoi2016—数字配对

    http://www.lydsy.com/JudgeOnline/problem.php?id=4514 (题目链接) 题意 n个数,每个数值为a[i],有b[i]个,权值为c[i].若两个数能配对当 ...

  7. T2 Func<in T1,out T2>(T1 arg)

    委托调用方法的4种方式. using System; using System.Collections.Generic; namespace ConsoleApplication1 { delegat ...

  8. Hotelling T2检验和多元方差分析

    1.1 Hotelling T2检验 Hotelling T2检验是一种常用多变量检验方法,是单变量检验的自然推广,常用于两组均向量的比较. 设两个含量分析为n,m的样本来自具有公共协方差阵的q维正态 ...

  9. SPSS数据分析—配对Logistic回归模型

    Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配 ...

随机推荐

  1. Python 3 面向对象进阶

    Python 3 面向对象进阶 一.    isinstance(obj,cls)和issubclass(sub,super) isinstance(obj,cls)检查是否obj是否是类 cls 的 ...

  2. grep egrep

    grep: Global search REgular expression and Print out the line. 作用: 文本搜索工具,根据用户指定的“模式”对目标文本逐行进行匹配检查:打 ...

  3. nginx expires缓存提升网站负载

    语法: expires [time|epoch|max|off]默认值: expires off作用域: http, server, location使用本指令可以控制HTTP应答中的“Expires ...

  4. Spring Cloud之Feigin客户端重构思想

    应该重构接口信息(重点) toov5-parent  存放共同依赖信息 toov5-api       api的只有接口没有实现 toov5-api-member toov5-api-order to ...

  5. Hadoop 2.x简介

    Hadoop 2.0产生背景 Hadoop1.0中HDFS和MapReduce在高可用.扩展性等方面存在问题 HDFS存在的问题 NameNode单点故障,难以应用于在线场景 NameNode压力过大 ...

  6. java:安装Runtime Environment,设置Tomcat Server 的方法

    Eclipse 中开发Webapp, 一般需要配置Tomcat Server, 以便在Eclipse 中进行Debug.具体的步骤如下: 1. Windows ==>Preference ==& ...

  7. 手把手编写PHP框架 深入了解MVC运行流程

    1 什么是MVC MVC模式(Model-View-Controller)是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model).视图(View)和控制器(Controller ...

  8. 三 Django框架,Views(视图函数),也就是逻辑处理函数里的各种方法与属性

    Django框架,Views(视图函数),也就是逻辑处理函数里的各种方法与属性 Views(视图函数)逻辑处理,最终是围绕着两个对象实现的 http请求中产生两个核心对象: http请求:HttpRe ...

  9. css3加载spinner

    使用代码制作一个加载旋转器spinner 实现的原理是: 1.两个圆圈,其中一个圆圈是使用pseudo元素(:before)产生 2.由pseudo元素生成的圆通过负数的z-index而作用在下面 3 ...

  10. codeforces 707C C. Pythagorean Triples(数学)

    题目链接: C. Pythagorean Triples time limit per test 1 second memory limit per test 256 megabytes input ...