【LG4491】[HAOI2018]染色
【LG4491】[HAOI2018]染色
题面
题解
颜色的数量不超过\(lim=min(m,\frac nS)\)
考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色至少放\(S\)种
有\(m\)种颜色,那么要乘上\(C_m^i\)。
然后这\(n\)个位置分为\(i+1\)个部分:被钦定的\(i\)种颜色,每个\(S\)个;剩下\(m-i\)种颜色,一共\(n-iS\)种颜色,可以看作可重的全排列数,那么就有\(\frac{n!}{(S!)^i(n-iS)!}\),但是后面情况的每个部分有\(m-i\)种取法,所以还要乘上\((m-i)^{n-iS}\)
\(\therefore f[i]=C_m^i\frac{n!}{(S!)^i(n-iS)!}(m-i)^{n-iS}\)
那么答案是什么呢?
\(ans[i]:\)恰好出现\(S\)次的颜色恰好\(i\)种的方案数
用容斥搞一下:
=\sum_{j=i}^{lim}(-1)^{j-i}\frac{j!}{i!(j-i)!}f[j]\\
\Leftrightarrow
ans[i]*i!=\sum_{j=i}^{lim}\frac{(-1)^{j-i}}{(j-i)!}f[j]*j!
\]
然后\(NTT\)就可以了。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int Mod = 1004535809;
int fpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % Mod;
x = 1ll * x * x % Mod;
y >>= 1;
}
return res;
}
const int G = 3, iG = fpow(G, Mod - 2);
const int MAX_N = 1e7 + 5, MAX_M = 1e5 + 5;
int fac[MAX_N];
int C(int n, int m) {
if (m > n) return 0;
return 1ll * fac[n] * fpow(fac[n - m], Mod - 2) % Mod * fpow(fac[m], Mod - 2) % Mod;
}
int N, M, S, Limit, mx;
int W[MAX_N], A[MAX_N << 2], B[MAX_N << 2], rev[MAX_N << 2];
void NTT(int *p, int op) {
for (int i = 0; i < Limit; i++) if (rev[i] > i) swap(p[rev[i]], p[i]);
for (int i = 1; i < Limit; i <<= 1) {
int rot = fpow(op == 1 ? G : iG, (Mod - 1) / (i << 1));
for (int j = 0, pls = (i << 1); j < Limit; j += pls) {
int w = 1;
for (int k = 0; k < i; k++, w = 1ll * w * rot % Mod) {
int x = p[j + k], y = 1ll * w * p[i + j + k] % Mod;
p[j + k] = (x + y) % Mod, p[i + j + k] = (x - y + Mod) % Mod;
}
}
}
}
int main () {
N = gi(), M = gi(), S = gi();
for (int i = 0; i <= M; i++) W[i] = gi();
mx = max(N, M);
fac[0] = 1; for (int i = 1; i <= mx; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
int mn = min(M, N / S);
Limit = 1; int P = 0;
while (Limit < (mn + 1) << 1) Limit <<= 1, ++P;
for (int i = 0; i <= mn; i++)
A[i] = 1ll * fac[i] * C(M, i) % Mod *
fac[N] % Mod * fpow(M - i, N - i * S) % Mod *
fpow(1ll * fpow(fac[S], i) * fac[N - i * S] % Mod, Mod - 2) % Mod;
for (int i = 0; i <= mn; i++) {
B[i] = fpow(fac[mn - i], Mod - 2);
if ((mn - i) & 1) B[i] = Mod - B[i];
}
for (int i = 0; i < Limit; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (P - 1));
NTT(A, 1), NTT(B, 1);
for (int i = 0; i < Limit; i++) A[i] = 1ll * A[i] * B[i] % Mod;
NTT(A, 0);
int inv = fpow(Limit, Mod - 2);
for (int i = 0; i < Limit; i++) A[i] = 1ll * inv * A[i] % Mod;
int ans = 0;
for (int i = 0; i <= mn; i++) ans = (ans + 1ll * W[i] * A[mn + i] % Mod * fpow(fac[i], Mod - 2) % Mod) % Mod;
printf("%d\n", ans);
return 0;
}
【LG4491】[HAOI2018]染色的更多相关文章
- BZOJ 5306 [HAOI2018] 染色
BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...
- 【BZOJ5306】 [Haoi2018]染色
BZOJ5306 [Haoi2018]染色 Solution xzz的博客 代码实现 #include<stdio.h> #include<stdlib.h> #include ...
- [洛谷P4491] [HAOI2018]染色
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...
- [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)
[BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- P4491 [HAOI2018]染色
题目链接:洛谷 题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$. 数据范围:$ ...
- 【BZOJ5306】[HAOI2018]染色(NTT)
[BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i ...
- [BZOJ5306][HAOI2018]染色
bzoj luogu Description 给一个长度为\(n\)的序列染色,每个位置上可以染\(m\)种颜色.如果染色后出现了\(S\)次的颜色有\(k\)种,那么这次染色就可以获得\(w_k\) ...
- P4491 [HAOI2018]染色 容斥+NTT
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...
随机推荐
- 1588. [HNOI2002]营业额统计【平衡树-splay 或 线段树】
Description 营业额统计 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每 ...
- TP,TN,FP,FN
一张图搞定~~~ [转]https://blog.csdn.net/u011956147/article/details/78967145
- MFC窗体程序中添加调试控制台
在编写复杂程序的过程中,我们经常需要将一些信息输出到文件或者屏幕上.较控制台应用程序,MFC窗体程序要显得麻烦一些! 下面有2种方法来实现为MFC窗体程序添加调试控制台,方便程序员调试程序和了解当前程 ...
- rabbitmq关于guest用户登录失败解决方法
刚安装完rabbitmq,登录的时候出现了: login failed问题: 查看rabbitmq的文档,发现在3.3.1以后的版中,处于安全的考虑,guest这个默认的用户只能通过localhos ...
- 关于UWB技术:DecaWave公司的DW1000芯片资料
关于人在隧道工作时都需要准确的精确度确定精准的位置.DecaWave公司的DW1000芯片,对定位上的精确度更是再适合不过了.符合IEEE802.15.4-2011超宽带标准.按照数据手册上应该最小误 ...
- PAT——1058. 选择题
批改多选题是比较麻烦的事情,本题就请你写个程序帮助老师批改多选题,并且指出哪道题错的人最多. 输入格式: 输入在第一行给出两个正整数N(<=1000)和M(<=100),分别是学生人数和多 ...
- Eclipse部署Web项目,常用操作和常见错误的解决方案
部署Web项目到tomcat 在eclipse中找到Servers项,打开服务器(F3)(建议直接删除服务器,重新建立再设置比较好)1.Servers Locations 中选择Use Tomcat ...
- mysql5.7 安装版 表不能输入汉字解决方案
安装版本 的安装目录没有 my.ini 配置文件 在所在表执行 alter table 数据表名 CONVERT TO CHARACTER SET utf8;
- Django实现支付宝支付(沙箱)
1.安装SDK 点击右侧沙箱当面付接入指导,之后可以看到一个下载SDK的按钮,点击后,会有python的SDK下载链接,但还是属于公测中,也可以通过在cmd里输入以下代码来安装. pip instal ...
- Vue 子组件接收父组件的值
1.父组件 <template> <div id="rightmenu8"> <rightmenu7 ref="rightmenu7&quo ...