Luogu_3239 [HNOI2015]亚瑟王
Luogu_3239 [HNOI2015]亚瑟王
vim-markdown 真好用
这个题难了我一下午
第一道概率正而八经\(DP\),还是通过qbxt讲解才会做的。
发现Sengxian真是个dalao。讲的真是很清楚。代码也比较干净
做题心得:
1.概率和期望联系紧密。若无法直接计算期望,可是用期望的性质,将问题转化为算概率
2.若目标概率无法直接计算,可以通过计算过程中的某个步骤的概率,间接的计算出目标概率
若跟据局面进行状压\(DP\),时间复杂度成熟不起。
考虑优化状态。
发现,对于某一张牌,我们只要知道他用没有用过就行了。
所以一个很重要的操作就是定序。
我们只需要枚举某一张牌。在某一个局面中是否会被选中就可以了。
根据某一个局面出现的概率,便可计算出某一张牌在某个局面被选的概率,从而推出期望。
那么问题就是推出这个局面出现的概率。也就是过程中某个步骤的概率。
我们可以更改一下决策, 我们只需要枚举在某一个局面中。要么在剩余j轮(也就是当前局面)的时候被选中,要么在永远不会被选中
然后直接转移到决策下一张卡。
这样做, 我们可以避免同一张卡之间不同决策之间的互相影响, 又可以不丢失任何答案。
设\(f_{i,j}\)为前\(i\)张卡牌已经决策完了,还剩下\(j\)局可以进行
根据上面的说明,便可以写出状态转移方程
\(f_{i,j}=f_{i-1,j}*(1-p_i)^j+f_{i-1,j+1}*(1-(1-p_i)^{j+1})\)
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <bitset>
using std::bitset;
const int maxn=101000;
const int MAX=100000;
const long long mod=1000000001;
const int log_2=17;
const int log_3=11;
int n;
long long map[log_2][300];
int check[log_2][log_3];
int Log_2,Log_3;
int len[log_2];
int step[maxn],tot;
bitset<maxn>vis;
void init()
{
for(int i=0;i<(1<<log_3);i++)
if((i&(i<<1))==0)
step[++tot]=i;
return ;
}
double Log(int base,int val)
{
return log(val)/log(base);
}
long long calc(int limte)
{
memset(map,0,sizeof(map));
memset(check,0,sizeof(check));
memset(len,0,sizeof(len));
int wide=0;
for(int &i=wide,pas1=limte;i<=Log_2&&pas1<=n;i++,pas1<<=1)
for(int j=0,pas2=pas1;j<=Log_3&&pas2<=n;j++,pas2*=3)
{
check[i][j]=pas2,len[i]|=(1<<j);
vis[pas2]=1;
}
wide-=1;
for(int i=1;step[i]<=len[0]&&i<=tot;i++)
map[0][i]=1;
for(int i=0;i<wide;i++)
for(int j=1;step[j]<=len[i]&&j<=tot;j++)
for(int k=1;step[k]<=len[i+1]&&k<=tot;k++)
if((step[j]&step[k])==0)
map[i+1][k]=(map[i][j]+map[i+1][k])%mod;
long long ans=0;
for(int i=0;step[i]<=len[wide];i++)
ans=(ans+map[wide][i])%mod;
return ans;
}
int main()
{
init();
scanf("%d",&n);
Log_2=Log(2,n);Log_3=Log(3,n);
long long ans=1;
for(int i=1;i<=n;i++)
if(!vis[i])
ans=(ans*calc(i))%mod;
printf("%lld",ans);
}
Luogu_3239 [HNOI2015]亚瑟王的更多相关文章
- 【BZOJ4008】[HNOI2015]亚瑟王 期望
[BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...
- BZOJ 4008: [HNOI2015]亚瑟王( dp )
dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...
- 【BZOJ4008】[HNOI2015]亚瑟王(动态规划)
[BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发 ...
- [洛谷 P3239] [HNOI2015]亚瑟王
[HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知, ...
- 4008: [HNOI2015]亚瑟王
4008: [HNOI2015]亚瑟王 链接 分析: 根据期望的线性性,直接求出每张牌出现的概率,最后乘以攻击力就是答案. 每张牌出现的概率只与它前面的牌有关,与后面的没有关系,于是按顺序考虑每张牌. ...
- 【BZOJ4008】[HNOI2015]亚瑟王
[BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ...
- bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望
[bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...
- 概率DP——BZOJ4008 [HNOI2015]亚瑟王
[HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...
- Bzoj4008 [HNOI2015]亚瑟王
Time Limit: 20 Sec Memory Limit: 512 MBSec Special Judge Submit: 1009 Solved: 605[Submit][Status] ...
随机推荐
- Java 基础:数组
一.数组声明: int[] x; int x[]; 在Java中一般使用前者,机把int[]看做一个类型,C++中只能后者 二.数组初始化: 直接提供值: int[] x = {1, 3, 4}; i ...
- Shared——The best front-end hacking cheatsheets — all in one place.
原文地址:https://medium.freecodecamp.org/modern-frontend-hacking-cheatsheets-df9c2566c72a The best front ...
- web 开发人员必须学习的 3 门语言
web 开发人员必须学习的 3 门语言:html css js HTML 定义了网页的内容 CSS 描述了网页的布局 JavaScript 网页的行为
- git revert后导致合并代码丢失
起因 我有一个开发分支antd3.x和一个主分支develop,我在合并antd3.x到develop的时候发现有些修改没有合并进来. 查找问题 然后就去网上查,发现这篇文章<git合并丢失代码 ...
- JavaScript的进阶之路(四)理解对象2
对象的三个属性 原型属性 1.var v={}的原型是Object.prototype;继承了一个constructor属性指代Object()构造函数,实际的原型是constructor.proto ...
- 关于 webpack 跨域
一.使用 http-proxy-middleware 代理 安装 http-proxy-middleware 依赖 在src 目录下 新建一个 setupProxy.js文件 // 引用依赖 va ...
- js 捕捉回车键触发登录,并验证输入内容
js 捕捉回车键触发登录,并验证输入内容 有时候我们会遇到 web 页面中捕捉按键,触发一些效果, 比如常见的回车键触发登录,并验证输入内容,下面会介绍,截图: 一.最简单的捕捉回车键:判断按下的是不 ...
- Python爬虫教程-01-爬虫介绍
Spider-01-爬虫介绍 Python 爬虫的知识量不是特别大,但是需要不停和网页打交道,每个网页情况都有所差异,所以对应变能力有些要求 爬虫准备工作 参考资料 精通Python爬虫框架Scrap ...
- 微信小程序开发10-开发流程
1.Flex布局 Flex是Flexible Box的缩写,意为”弹性布局”,用来为盒状模型提供最大的灵活性.任何一个容器都可以指定为Flex布局. 2.设置容器,用于统一管理容器内项目布局,也就是管 ...
- HTML5盒子模型。
盒子模型. 盒子由 margin.border.padding.content 四部分组成. margin :外边距 border:边框 padding:内边距 (内容与边框的距离) content: ...