concurrent 模块

回顾:

  对于python来说,作为解释型语言,Python的解释器必须做到既安全又高效。我们都知道多线程编程会遇到的问题,解释器要留意的是避免在不同的线程操作内部共享的数据,同时它还要保证在管理用户线程时保证总是有最大化的计算资源。而python是通过使用全局解释器锁来保护数据的安全性:

  python代码的执行由python虚拟机来控制,即Python先把代码(.py文件)编译成字节码(字节码在Python虚拟机程序里对应的是PyCodeObject对象,.pyc文件是字节码在磁盘上的表现形式),交给字节码虚拟机,然后虚拟机一条一条执行字节码指令,从而完成程序的执行。python在设计的时候在虚拟机中,同时只能有一个线程执行。同样地,虽然python解释器中可以运行多个线程,但在任意时刻,只有一个线程在解释器中运行。而对python虚拟机的访问由全局解释器锁来控制,正是这个锁能保证同一时刻只有一个线程在运行

多线程执行方式:

  • 设置GIL(global interpreter lock).
  • 切换到一个线程执行。
  • 运行:
  • a,指定数量的字节码指令。
  • b,线程主动让出控制(可以调用time.sleep(0))。
  • 把线程设置为睡眠状态。
  • 解锁GIL.
  • 再次重复以上步骤。
  GIL的特性,也就导致了python不能充分利用多核cpu。而对面向I/O的(会调用内建操作系统C代码的)程序来说,GIL会在这个I/O调用之前被释放,以允许其他线程在这个线程等待I/O的时候运行。如果线程并为使用很多I/O操作,它会在自己的时间片一直占用处理器和GIL。这也就是所说的:I/O密集型python程序比计算密集型的程序更能充分利用多线程的好处。
总之,不要使用python多线程,使用python多进程进行并发编程,就不会有GIL这种问题存在,并且也能充分利用多核cpu

threading使用回顾:

import threading
import time def run(n):
semaphore.acquire()
time.sleep(2)
print("run the thread: %s" % n)
semaphore.release() if __name__ == '__main__':
start_time = time.time()
thread_list = []
semaphore = threading.BoundedSemaphore(5) # 信号量,最多允许5个线程同时运行
for i in range(20):
t = threading.Thread(target=run, args=(i,))
t.start()
thread_list.append(t)
for t in thread_list:
t.join() used_time = time.time() - start_time
print('用时',used_time) # 用时 8.04102110862732

  

ThreadPoolExecutor多并发:

1、submit

import time
from concurrent import futures def run(n):
time.sleep(2)
print("run the thread: %s" % n) if __name__ == '__main__':
start = time.time()
with futures.ThreadPoolExecutor(5) as executor:
for i in range(20):
executor.submit(run,i) print(time.time()-start) # 8.006775379180908

2、map

import time
from concurrent import futures def run(n):
time.sleep(2)
print("run the thread: %s" % n) if __name__ == '__main__':
start = time.time()
with futures.ThreadPoolExecutor(5) as executor:
executor.map(run,range(20)) print(time.time()-start) # 8.006775379180908 

executor.submit 和 futures.as_completed 这个组合比executor.map 更灵活,因为 submit 方法能处理不同的可调用对象和参数,而 executor.map 只能处理参数不同的同一个可调用对象。此外,传给 futures.as_completed 函数的期物集合可以来自多个 Executor 实例,例如一些由 ThreadPoolExecutor 实例创建,另一些由ProcessPoolExecutor创建

ProcessPoolExecutor多并发:

1、submit

import time
from concurrent import futures import time
from concurrent import futures def run(n):
time.sleep(2)
print("run the thread: %s" % n) if __name__ == '__main__':
start = time.time()
with futures.ProcessPoolExecutor(5) as executor:
for i in range(20):
executor.submit(run, i) print(time.time() - start) # 8.365714311599731

2、map

import time
from concurrent import futures import time
from concurrent import futures def run(n):
time.sleep(2)
print("run the thread: %s" % n) if __name__ == '__main__':
start = time.time()
with futures.ProcessPoolExecutor(5) as executor:
executor.map(run, range(20)) print(time.time() - start) # 8.317736864089966

接口压力测试的脚本

# #!/usr/bin/env python
# # -*- coding:utf-8 -*- import os
import time
import logging
import requests
import threading
from multiprocessing import Lock,Manager
from concurrent import futures download_url = 'http://192.168.188.105:8888'
workers = 250
cpu_count = 4 session = requests.Session() def handle(cost,mutex,contain):
with mutex:
min_cost = contain['min_cost']
max_cost = contain['max_cost']
hit_count = contain['hit_count']
average_cost = contain['average_cost']
if min_cost == 0:
contain['min_cost'] = cost
if min_cost > cost:
contain['min_cost'] = cost
if max_cost < cost:
contain['max_cost'] = cost
average_cost = (average_cost*hit_count + cost) / (hit_count + 1)
hit_count +=1
contain['average_cost'] = average_cost
contain['hit_count'] = hit_count
logging.info(contain) def download_one(mutex,contain):
while True:
try:
stime = time.time()
request = requests.Request(method='GET', url=download_url,)
prep = session.prepare_request(request)
response = session.send(prep, timeout=50)
etime = time.time()
print(response.status_code)
logging.info('process[%s] thread[%s] status[%s] cost[%s]',os.getpid(),threading.current_thread().ident,
response.status_code,etime-stime)
handle(float(etime-stime),mutex,contain)
# time.sleep(1)
except Exception as e:
logging.error(e)
print(e) def new_thread_pool(mutex,contain):
with futures.ThreadPoolExecutor(workers) as executor:
for i in range(workers):
executor.submit(download_one,mutex,contain) def subprocess():
manager = Manager()
mutex = manager.Lock()
contain = manager.dict({'average_cost': 0, 'min_cost': 0, 'max_cost': 0, 'hit_count': 0}) with futures.ProcessPoolExecutor(cpu_count) as executor:
for i in range(cpu_count):
executor.submit(new_thread_pool,mutex,contain) if __name__ == '__main__':
logging.basicConfig(filename="client.log", level=logging.INFO,
format="%(asctime)s [%(filename)s:%(lineno)d] %(message)s", datefmt="%m/%d/%Y %H:%M:%S [%A]")
subprocess()

  

  

Python开发【模块】:Concurrent的更多相关文章

  1. python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...

  2. python全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程 什么是线程? 线程是cpu调度的最小单位 进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的 ...

  3. Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures

    参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...

  4. Python标准模块--concurrent.futures(进程池,线程池)

    python为我们提供的标准模块concurrent.futures里面有ThreadPoolExecutor(线程池)和ProcessPoolExecutor(进程池)两个模块. 在这个模块里他们俩 ...

  5. Python标准模块--concurrent.futures

    1 模块简介 concurrent.futures模块是在Python3.2中添加的.根据Python的官方文档,concurrent.futures模块提供给开发者一个执行异步调用的高级接口.con ...

  6. Python标准模块--concurrent.futures 进程池线程池终极用法

    concurrent.futures 这个模块是异步调用的机制concurrent.futures 提交任务都是用submitfor + submit 多个任务的提交shutdown 是等效于Pool ...

  7. python开发模块基础:re正则

    一,re模块的用法 #findall #直接返回一个列表 #正常的正则表达式 #但是只会把分组里的显示出来#search #返回一个对象 .group()#match #返回一个对象 .group() ...

  8. python开发模块基础:异常处理&hashlib&logging&configparser

    一,异常处理 # 异常处理代码 try: f = open('file', 'w') except ValueError: print('请输入一个数字') except Exception as e ...

  9. python开发模块基础:os&sys

    一,os模块 os模块是与操作系统交互的一个接口 #!/usr/bin/env python #_*_coding:utf-8_*_ ''' os.walk() 显示目录下所有文件和子目录以元祖的形式 ...

  10. python开发模块基础:序列化模块json,pickle,shelve

    一,为什么要序列化 # 将原本的字典.列表等内容转换成一个字符串的过程就叫做序列化'''比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?现在我们能想到的方法就是存在文 ...

随机推荐

  1. 【Java面试题】27 多线程笔试面试概念问答

    第一题:线程的基本概念.线程的基本状态及状态之间的关系? 线程,有时称为轻量级进程,是CPU使用的基本单元:它由线程ID.程序计数器.寄存器集合和堆栈组成.它与属于同一进程的其他线程共享其代码段.数据 ...

  2. 轻量级iOS安全框架:SSKeyChain

    原文地址: http://blog.csdn.net/kmyhy/article/details/7261065 SSKeyChains对苹果安全框架API进行了简单封装,支持对存储在钥匙串中密码.账 ...

  3. 学习使用资源文件[11] - DLL 中的资源文件

      本例将把一张 bmp 图片, 以资源文件的方式嵌入 dll, 然后再调用. 第一步: 建一个 DLL 工程, 如图: 然后保存, 我这里使用的名称都是默认的. 第二步: 建一个资源原文件, 如图: ...

  4. Ubuntu:为 Firefox 浏览器 安装 flash 插件

    从adobe上下载浏览器flashplayer插件:推荐 x.tar.gz格式的——通用格式. 解压tar.gz后可以得到:libflashplayer.so 文件 将 libflashplayer. ...

  5. C# 基础小知识之yield 关键字

    对于yield关键字我们首先看一下msdn的解释: 如果你在语句中使用 yield 关键字,则意味着它在其中出现的方法.运算符或 get 访问器是迭代器. 通过使用 yield 定义迭代器,可在实现自 ...

  6. VC++ 操作Windows快捷方式

    声明:本文是参考网友博文,然后自己实践整理所得,转载请注明出处! Windows的快捷方式实际上是一个带有扩展名LNK的数据文件,其中包含有用于访问Windows某一对象(即在资源管理器中所能浏览的所 ...

  7. 使用 XPath

    XPath 简介: (1) 前面我们爬取一个网页,都是使用正则表达式来提取想要的信息,但是这种方式比较复杂,一旦有一个地方写错,就匹配不出来了,因此我们可以使用 XPath 来进行提取(2) XPat ...

  8. Unity版本与虚拟现实头盔Deepoon大朋版本测试

    一.看这里 Unity官方与OC runtime版本兼容性说明: https://developer.oculus.com/documentation/game-engines/latest/conc ...

  9. STM32的操作过程,寄存器配置与调试过程(转载)

    很多学习stm32的,为什么学习stm32他也不知道,我们所知道的就是各个论坛讨论stm32的很多,而我们很多人之所以学习stm32是很多的淘宝卖家做了大量的图片文字宣传,于是我们经不住诱惑就买了板子 ...

  10. Mybatis返回map集合

    <resultMap id="pieMap" type="HashMap"> <result property="value&quo ...