题目链接:

  听说这道题是\(FFT\)板子题,于是我就来写了……

  首先可以发现这个式子:\[E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2} \]

  然后可以对两半分别考虑一下。发现下标刚好是\(j+(i-j)=i\),于是我们就可以开始构(gao)造(shi)了,弄俩多项式出来:

\[A_1(x)=0x^0+q_1x^1+q_2x^2+\dots+q_nx^n\]

\[A_2(x)=\frac{-1}{n^2}x^0+\frac{-1}{(n-1)^2}x^1+\dots+0x^n+\dots+\frac{1}{(n-1)^2}x^{2n-1}+\frac{1}{n^2}x^{2n}\]

  把这两个多项式乘起来,取次数为\((n,2n]\)的项前面的系数即为答案。

  实际上,把多函数\(A_1(x)\)的系数全部左移一位也是可以的,只不过答案的区间要跟着移一下。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<complex>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define C complex<double>
#define maxn 300010
#define pi (acos(-1)) using namespace std;
typedef double llg; int n,m,L,R[maxn];
C a[maxn],b[maxn]; llg gi(int x){return 1.0*x*x;}
void fft(C *a){
for(int i=0;i<n;i++) if(i<R[i]) swap(a[i],a[R[i]]);
for(int i=1;i<n;i<<=1){
C wn(cos(pi/i),sin(pi/i)),x,y;
for(int j=0;j<n;j+=(i<<1)){
C w(1,0);
for(int k=0;k<i;k++,w*=wn){
x=a[j+k]; y=w*a[j+i+k];
a[j+k]=x+y; a[j+i+k]=x-y;
}
}
}
} int main(){
scanf("%d",&n); m=n;
for(int i=0;i<n;i++) scanf("%lf",&a[i].real());
for(int i=0;i<n;i++) b[i].real()=-1.0/gi(n-i),b[2*n-i]=-b[i];
for(n=1;n<=(m<<1);n<<=1) L++;
for(int i=0;i<n;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
fft(a); fft(b);
for(int i=0;i<n;i++) a[i]*=b[i];
fft(a); reverse(a+1,a+n);
for(int i=m;i<(m<<1);i++) printf("%.6lf\n",a[i].real()/n);
return 0;
}
 

BZOJ 3527 【ZJOI2014】 力的更多相关文章

  1. BZOJ 3527: [Zjoi2014]力

    Description 求 \(E_i=\sum _{j=0}^{i-1} \frac {q_j} {(i-j)^2}-\sum _{j=i+1}^{n-1} \frac{q_j} {(i-j)^2} ...

  2. BZOJ 3527: [ZJOI2014]力(FFT)

    BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...

  3. ●BZOJ 3527 [Zjoi2014]力

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...

  4. bzoj 3527 [Zjoi2014]力——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...

  5. bzoj 3527 [Zjoi2014] 力 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...

  6. bzoj 3527: [Zjoi2014]力 快速傅里叶变换

    题意: 给出n个数qi,给出Fj的定义如下:  令Ei=Fi/qi,求Ei. fft的那一堆东西还是背不到啊...这次写虽说完全自己写的,但是还是在参见了以前fft程序的情况下调了很久,主要在如下几点 ...

  7. 数学(FFT):BZOJ 3527 [Zjoi2014]力

    题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...

  8. BZOJ 3527: [Zjoi2014]力(FFT)

    我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...

  9. 【刷题】BZOJ 3527 [Zjoi2014]力

    Description 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi ...

  10. bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT

    题目大意: 给出n个数\(q_i\)定义 \[f_i = \sum_{i<j}{\frac{q_iq_j}{(i-j)^2}} - \sum_{i>j}\frac{q_iq_j}{(i-j ...

随机推荐

  1. 【BZOJ4698】Sdoi2008 Sandy的卡片 后缀数组+RMQ

    [BZOJ4698]Sdoi2008 Sandy的卡片 Description Sandy和Sue的热衷于收集干脆面中的卡片.然而,Sue收集卡片是因为卡片上漂亮的人物形象,而Sandy则是为了积攒卡 ...

  2. [IIS] IIS Framework "aspnet_regiis.exe" 注册

    Error:处理程序“PageHandlerFactory-Integrated”在其模块列表中有一个错误模块“

  3. 【Android】Scrollview 相关问题汇总

    去除Scrollview 滑动边界渐变颜色 去掉滚动条,并将在滑动时,边界不会变成灰白 <horizontalscrollview android:overScrollMode="ne ...

  4. [MongoDB] 机器换IP之后的设置

    组里用的几台机器换了网段,MongoDB需要做重新配置. 查看Replica Set的状态如下: rs.status() { "startupStatus" : 1, " ...

  5. JSONUtil(JAVA对象/List与json互转,xml与json互转)

    package com.chauvet.utils.json; import java.io.BufferedReader; import java.io.File; import java.io.F ...

  6. 使用or展开进行sql优化(即sql语法union all代替or可以提高效率)

    问题: 这样一条sql应该怎么优化? select * from sys_user where user_code = 'zhangyong' or user_code in (select grp_ ...

  7. CRM - 起步

    一.crm简介 crm 客户关系管理软件 ( Customer Relationship Management ) 二.起步 models.py 表结构 from django.db import m ...

  8. kubernetes实战(三):k8s v1.11.1 持久化EFK安装

    1.镜像下载 所有节点下载镜像 docker pull kibana: docker tag kibana: docker.elastic.co/kibana/kibana: docker pull ...

  9. python知识大全目录,想学的看过来!

    Python总结篇——知识大全   python装饰器   PyCharm安装与配置,python的Hello World   sort与sorted的区别及实例   我必须得告诉大家的MySQL优化 ...

  10. EasyUI Progressbar 进度条

    通过 $.fn.progressbar.defaults 重写默认的 defaults. 进度条(progressbar)提供了一种显示长时间操作进度的反馈.进度可被更新以便让用户知道当前正在执行的操 ...