Eddy's digital Roots

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5928    Accepted Submission(s): 3270

Problem Description
The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.

 
Input
The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).
 
Output
Output n^n's digital root on a separate line of the output.
 
Sample Input
2
4
0
 
Sample Output
4
4
 
Author
eddy
思路:求n^n对9取模,特判0的情况;
 对于那个定理的证明;
设那个数为abcd;这个数=1000*a+100*b+10*c+d;
        a+b+c+d=这个数-9999a-99b-99c;
        由于9999a-99b-9c被九整除;得证;
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
#define esp 0.00000000001
//#pragma comment(linker, "/STACK:102400000,102400000")
int quickpow(int a,int b,int c)
{
int ans=;
while(b)
{
if(b&)
{
ans*=a;
ans%=c;
}
b>>=;
a*=a;
a%=c;
}
return ans==?:ans;
}
int main()
{
int x,y,z,i,t;
while(~scanf("%d",&x))
{
if(!x)break;
printf("%d\n",quickpow(x,x,));
}
return ;
}
  

hdu 1163 九余数定理的更多相关文章

  1. hdu 1163 Eddy's digital Roots 【九余数定理】

    http://acm.hdu.edu.cn/showproblem.php?pid=1163 九余数定理: 如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除:如果一个数各个数位上的数字 ...

  2. HDOJ 1163 Eddy's digital Roots 九余数定理+简单数论

    我在网上看了一些大牛的题解,有些知识点不是太清楚, 因此再次整理了一下. 转载链接: http://blog.csdn.net/iamskying/article/details/4738838 ht ...

  3. HDOJ 1163 Eddy's digital Roots(九余数定理的应用)

    Problem Description The digital root of a positive integer is found by summing the digits of the int ...

  4. HDU1013,1163 ,2035九余数定理 快速幂取模

    1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young ...

  5. HDU——1013Digital Roots(九余数定理)

    Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  6. hdu-1163(九余数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1163 思路: 九余数定理:一个数对九取余的结果叫做九余数, 一个数的各个位数相加的得到的小于10的数也 ...

  7. HDU 1163 Eddy's digital Roots(模)

    HDU 1163 题意简单,求n^n的(1)各数位的和,一旦和大于9,和再重复步骤(1),直到和小于10. //方法一:就是求模9的余数嘛! (228) leizh007 2012-03-26 21: ...

  8. Eddy's digital Roots(九余数定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  9. HDU1163【九余数定理】【水题】

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

随机推荐

  1. 如何学习 cocos2d-x ?

    发表于 04/23/2014 作者 zrong — 24 条评论 ↓ 11,687 次查看 本站文章除注明转载外,均为本站原创或者翻译. 本站文章欢迎各种形式的转载,但请18岁以上的转载者注明文章出处 ...

  2. Windows Phone 自定义一个启动画面

    1.新建一个UserControl <UserControl x:Class="LoadingPage.PopupSplash" xmlns="http://sch ...

  3. struts2的占位符*在action中的配置方法

    转自:https://blog.csdn.net/u012546338/article/details/68946633 在配置<action> 时,可以在 name,class,meth ...

  4. 微信小程序 --- 文件的上传和下载

    文件上传 / 文件下载 : wx.uploadFile

  5. MariaDB登陆

    设置root密码 “mariabd”是新密码 [root@master /]# mysqladmin -u root password mariadb [root@master /]# mysql - ...

  6. Jenkins中maven的作用--构建项目(三)

    本文主要根据Jenkins上的日志来继续说明构建项目的过程,上文我们已经讲到构建一个测试环境或单独终端的过程,详情可以了解上篇文章 一.背景介绍 首先看下SVN代码的仓库的结构: 代码仓库里有一个文件 ...

  7. xplan-打印执行顺序

    -- ------------------------------------------------------------------------------------------------- ...

  8. describe neural networks as a series of computational steps via a directed graph.

    https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...

  9. android的一些类库的优缺点

    经过本人的面试经验,以及接触的android项目,总结了一下android的一些类库的优缺点: 一,线程方面 1.AsyncTask 首先是线程优化以及缺陷方面,针对目前大多数类库来说,都有好的设计方 ...

  10. Squirrel语言初探(可以使用VC6或者MinGW编译)

    Squirrel语言初探 为啥我要关注Squirrel语言?原来Squirrel就很像我希望设计出的理想中的语言(当然也不完全符合).比如我觉得Lua的语法表述不清晰,累赘,于是想用C系语法来代替Lu ...