HDU 4990 Reading comprehension(矩阵快速幂)题解
思路:
如图找到推导公式,然后一通乱搞就好了
要开long long,否则红橙作伴
代码:
#include<set>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define ll long long
const int maxn = 3;
const int MOD = 1000000000+7;
const int INF = 0x3f3f3f3f;
using namespace std;
ll m;
struct Mat{
ll s[maxn][maxn];
void init(){
for(int i = 0;i < maxn;i++)
for(int j = 0;j < maxn;j++)
s[i][j] = 0;
}
};
Mat mul(Mat a,Mat b){
Mat t;
t.init();
for(int i = 0;i < maxn;i++){
for(int j = 0;j < maxn;j++){
for(int k = 0;k < maxn;k++){
t.s[i][j] = (t.s[i][j] + a.s[i][k]*b.s[k][j])%m;
}
}
}
return t;
}
Mat pow_mat(Mat p,int n){
Mat ret;
ret.init();
for(int i = 0;i < maxn;i++)
ret.s[i][i] = 1;
while(n){
if(n & 1) ret = mul(ret,p);
p = mul(p,p);
n >>= 1;
}
return ret;
}
int main(){
ll n;
while(scanf("%lld%lld",&n,&m) != EOF){
Mat A,B,T;
memset(T.s,0,sizeof(T.s));
memset(B.s,0,sizeof(B.s));
T.s[0][0] = T.s[1][0] = T.s[0][2] = T.s[2][2] = 1;
T.s[0][1] = 2;
if(n == 1) printf("%lld\n",1%m);
else if(n == 2) printf("%lld\n",2%m);
else{
B.s[0][0] = 2,B.s[1][0] = 1,B.s[2][0] = 1;
A = pow_mat(T,n - 2);
A = mul(A,B);
printf("%lld\n",A.s[0][0]);
}
}
return 0;
}
HDU 4990 Reading comprehension(矩阵快速幂)题解的更多相关文章
- HDU 4990 Reading comprehension 矩阵快速幂
题意: 给出一个序列, \(f_n=\left\{\begin{matrix} 2f_{n-1}+1, n \, mod \, 2=1\\ 2f_{n-1}, n \, mod \, 2=0 \end ...
- hdu 4990 Reading comprehension 二分 + 快速幂
Description Read the program below carefully then answer the question. #pragma comment(linker, " ...
- hdu4990 Reading comprehension 矩阵快速幂
Read the program below carefully then answer the question.#pragma comment(linker, "/STACK:10240 ...
- HDU.1575 Tr A ( 矩阵快速幂)
HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- HDU - 4990 Reading comprehension 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4990 题意 初始的ans = 0 给出 n, m for i in 1 -> n 如果 i 为奇 ...
- HDU 4990 Reading comprehension 简单矩阵快速幂
Problem Description Read the program below carefully then answer the question.#pragma comment(linker ...
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
- hdu 2604 Queuing(矩阵快速幂乘法)
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
随机推荐
- SWT/JFace开发遇到org.eclipse.core.runtime.IProgressMonitor问题的解决办法(转载)
今日正在使用SWT和JFace开发一个系统,在搭建JFace平台时遇到了一个问题,运行HelloWorld程序抛出org.eclipse.core.runtime.IProgressMonitor的n ...
- jvm原理之内存机制
转自:https://www.cnblogs.com/dreamowneryong/p/6381633.html JVM栈由堆.方法区,栈.本地方法栈.程序计数器等部分组成,结构图如下所示: 还有一张 ...
- 详解Go语言中的屏蔽现象
在刚开始学习Go语言的过程中,难免会遇到一些问题,尤其是从其他语言转向Go开发的人员,面对语法及其内部实现的差异,在使用Go开发时也避免不了会踩"坑".本文主要针对Go设计中的屏蔽 ...
- MYSQL创建数据表!
几个常见的建表原则: a,表都加前缀b,所有的字段选择最小的数据类型,如id可以使用mediumint比INT节省25%的空间c,尽量所有的字段都设置为NOT NULL的,这样能让速度更快d,为合适的 ...
- 【JavaScript算法】---插入排序
一.什么叫做插入排序法 有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求插入后此数据序列仍然有序,这个时候就要用到一种新的排序方法——插入排序法 二.核心 插入排序的基本操作 ...
- c# 公共方法
MyMeans using System; using System.Collections.Generic; using System.Text; using System.Windows.Form ...
- hihoCoder_1449_后缀自动机三·重复旋律6
#1449 : 后缀自动机三·重复旋律6 时间限制:15000ms 单点时限:3000ms 内存限制:512MB 描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一个音乐旋律被表示为一段数构成的数 ...
- Python爬虫基础(三)urllib2库的高级使用
Handler处理器 和 自定义Opener opener是 urllib2.OpenerDirector 的实例,其中urlopen是模块默认构建的opener. 但是基本的urlopen()方法不 ...
- Django - 模型层 - 上
一.ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人 ...
- CMDB三大绝招,助我站稳运维之巅
上一篇(内功篇)介绍了建设CMDB的内功心法,接下来和各位交流下建设CMDB的招式.内功是根基.是基础,决定了武学修为境界的高低,招式也许就是明心见性之后的修行.修为指一个人的修养.素质.道德.涵养. ...