题意分析

首先 要求起点终点不连通

再结合数据范围 就是最小割了

首先我们可以建一个图出来

如果\(x\)可以到\(y\)的话

那么我们就从\(x\)向\(y\)连一条代价为\(h[x]-h[y]+1\)的边 代表不联通的代价

可是如果存在以下情况呢

如果我们选择切断\(c\)到\(d\)的边的话

实际上我们也切断了\(a\)到\(c\)以及\(b\)到\(c\)

所以我们可以这么建

然后跑最大流就可以了

由于起点以及终点不可以被修改

所以我忽视了别的点到起点的连边

同时别的点到终点的连边边权都是\(inf\)

CODE:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<string>
#include<queue>
#include<map>
#include<stack>
#include<list>
#include<set>
#include<deque>
#include<vector>
#include<ctime>
#define ll long long
#define inf 0x7fffffff
#define N 88
#define IL inline
#define M 5008611
#define D double
#define ull unsigned long long
#define R register
using namespace std;
template<typename T>IL void read(T &_)
{
T __=0,___=1;char ____=getchar();
while(!isdigit(____)) {if(____=='-') ___=0;____=getchar();}
while(isdigit(____)) {__=(__<<1)+(__<<3)+____-'0';____=getchar();}
_=___ ? __:-__;
}
/*-------------OI使我快乐-------------*/
int T;ll ans;
int n,m,tot=1,sx,sy,tx,ty;
int hei[N][N],to[M],nex[M],head[N*N*5],w[M];
int dep[5*N*N],cur[5*N*N];
vector<pair<int,int> > G[N*N];
queue<int> Q;
bool vis[N][N];
int tox[6]={0,0,0,1,-1},toy[6]={0,1,-1,0,0};
IL int id(int x,int y){return (x-1)*m+y;}
IL bool safe(int x,int y){return x>=1&&x<=n&&y>=1&&y<=m;}
IL void add(int x,int y,int z)
{to[++tot]=y;nex[tot]=head[x];head[x]=tot;w[tot]=z;
swap(x,y);to[++tot]=y;nex[tot]=head[x];head[x]=tot;w[tot]=0;}
IL bool bfs()
{
for(R int i=1;i<=5*n*m;++i) dep[i]=0;
Q.push(id(sx,sy));dep[id(sx,sy)]=1;
for(;!Q.empty();)
{
int u=Q.front();Q.pop();
for(R int i=head[u];i;i=nex[i])
{
int v=to[i];
if(w[i]>0&&dep[v]==0)
{
dep[v]=dep[u]+1;Q.push(v);
}
}
}
return dep[id(tx,ty)]!=0;
}
IL int dfs(int now,int res)
{
if(now==id(tx,ty)||res==0) return res;
for(R int &i=cur[now];i;i=nex[i])
{
int v=to[i];
if(w[i]>0&&dep[v]==dep[now]+1)
{
int have=dfs(v,min(w[i],res));
if(have>0)
{
w[i]-=have;w[i^1]+=have;
return have;
}
}
}
return 0;
}
IL void Dinic()
{
while(bfs())
{
for(R int i=1;i<=5*n*m;++i) cur[i]=head[i];
int d=dfs(id(sx,sy),inf);
while(d) ans+=d,d=dfs(id(sx,sy),inf);
}
}
int main()
{
freopen("ski.in","r",stdin);
freopen("ski.out","w",stdout);
read(T);
while(T--)
{
read(n);read(m);read(sx);read(sy);read(tx);read(ty);
tot=1;ans=0;memset(head,0,sizeof head);
for(R int i=1;i<=n;++i)
for(R int j=1;j<=m;++j)
read(hei[i][j]);
if(abs(sx-tx)+abs(sy-ty)==1) {puts("-1");continue;}
for(R int i=1;i<=n;++i)
{
for(R int j=1;j<=m;++j)
for(R int k=1;k<=4;++k)
{
int nowx=i+tox[k],nowy=j+toy[k];
if(nowx==sx&&nowy==sy) continue;
if(safe(nowx,nowy)&&hei[nowx][nowy]<=hei[i][j])
G[id(nowx,nowy)].push_back(make_pair(hei[i][j]-hei[nowx][nowy]+1,id(i,j)));
}
}
for(R int i=1;i<=n*m;++i)
{
if(G[i].size())
sort(G[i].begin(),G[i].end());
}
// for(R int i=1;i<=n*m;++i)
// {
// if(G[i].size())
// {
// for(R int j=0;j<(int)G[i].size();++j)
// printf("%d -- %d --> %d\n",G[i][j].second,G[i][j].first,i);
// }
// }
for(R int i=1;i<=n*m;++i)
{
int now=0;
if(id(tx,ty)==i)
{
for(R int j=(int)G[i].size()-1;j>=0;--j)
{
// printf("%d -- %d --> %d\n",G[i][j].second,G[i][j].first,i);
++now;
add(G[i][j].second,i+now*n*m,inf);
add(i+now*n*m,i+(now-1)*n*m,inf);
}
}
else
{
for(R int j=(int)G[i].size()-1;j>=0;--j)
{
// printf("%d -- %d --> %d\n",G[i][j].second,G[i][j].first,i);
++now;
add(G[i][j].second,i+now*n*m,inf);
add(i+now*n*m,i+(now-1)*n*m,G[i][j].first);
}
}
}
Dinic();
printf("%lld\n",ans);
for(R int i=1;i<=n*m;++i) G[i].clear();
}
fclose(stdin);
fclose(stdout);
return 0;
}

HEOI 2019 RP++

考试题 T2的更多相关文章

  1. hdu3089 Josephus again|快速约瑟夫环

    题目链接:戳我 貌似是高一昨天的考试题T2?????感觉挺好玩的就搞了搞qwqwq 其实是HDU上面的题啦.... 对于普通的约瑟夫问题,大概是n个人围成一个环,从1开始报数,数到k,那个人出队,最后 ...

  2. [Noip2016]蚯蚓 D2 T2 队列

    [Noip2016]蚯蚓 D2 T2 Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯 ...

  3. T2 Func<in T1,out T2>(T1 arg)

    委托调用方法的4种方式. using System; using System.Collections.Generic; namespace ConsoleApplication1 { delegat ...

  4. Hotelling T2检验和多元方差分析

    1.1 Hotelling T2检验 Hotelling T2检验是一种常用多变量检验方法,是单变量检验的自然推广,常用于两组均向量的比较. 设两个含量分析为n,m的样本来自具有公共协方差阵的q维正态 ...

  5. bzoj4034: [HAOI2015]T2

    4034: [HAOI2015]T2 Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2684  Solved: 843 Description 有一 ...

  6. 【BZOJ 4517】【SDOI 2016 Round1 Day2 T2】排列计数

    本蒟蒻第一次没看题解A的题竟然是省选$Round1$ $Day2$ $T2$ 这道组合数学题. 考试时一开始以为是莫队,后来想到自己不会组合数的一些公式,便弃疗了去做第三题,,, 做完第三题后再回来看 ...

  7. NOIP欢乐模拟赛 T2 解题报告

    小澳的坐标系 (coordinate.cpp/c/pas) [题目描述] 小澳者表也,数学者景也,表动则景随矣. 小澳不喜欢数学,可数学却待小澳如初恋,小澳睡觉的时候也不放过. 小澳的梦境中出现了一个 ...

  8. Action<T1, T2>委托

    封装包含两个参数的方法委托,没有返回值. 语法 public delegate void Action<in T1, in T2>( T1 arg1, T2 arg2 ) 类型参数 in ...

  9. NOIP2013普及组 T2 表达式求值

    OJ地址:洛谷P1981 CODEVS 3292 正常写法是用栈 #include<iostream> #include<algorithm> #include<cmat ...

随机推荐

  1. apache重启

    1.进入apache下的bin目录 /usr/local/apache/bin 2.执行命令 ./apachectl graceful

  2. Java 设计模式系列(二十)状态模式

    Java 设计模式系列(二十)状态模式 状态模式,又称状态对象模式(Pattern of Objects for States),状态模式是对象的行为模式.状态模式允许一个对象在其内部状态改变的时候改 ...

  3. UCI数据

    http://archive.ics.uci.edu/ml/datasets.html?format=&task=&att=&area=&numAtt=&num ...

  4. Django和Ajax

    本文目录 一 什么是Ajax 二 基于jquery的Ajax实现 三 案例 四 文件上传 五 Ajax提交json格式数据 六 Django内置的serializers(把对象序列化成json字符串) ...

  5. XtrasReport 标签打印

    var lblList = new List<product_LblPrt_tmp>(); using (JL_MFGEntities ctx = new JL_MFGEntities() ...

  6. rabbitmq用户权限管理

    原文地址: http://my.oschina.net/hncscwc/blog/262246 安装最新版本的rabbitmq(3.3.1),并启用management plugin后,使用默认的账号 ...

  7. jmeter 性能分析 (一点点加)

    1.聚合报告 我们可以看到,通过这份报告我们就可以得到通常意义上性能测试所最关心的几个结果了. Samples -- 本次场景中一共完成了多少个Transaction Average -- 平均响应时 ...

  8. Python WebDriver + Firefox 文件下载

    firefox可以通过 在地址栏输入:about:config 或about:aupport 来查看或修改配置信息. 这里有两种解决方式, 1.设置自动保存下载 如下图勾选:以后自动采用相同的动作处理 ...

  9. 试题 C: 数列求值 蓝桥杯

    试题 C: 数列求值本题总分: 10 分[问题描述]给定数列 1, 1, 1, 3, 5, 9, 17, …,从第 4 项开始,每项都是前 3 项的和.求第 20190324 项的最后 4 位数字.[ ...

  10. Android-画板

    在上一篇博客,Android-图像原理/绘制原理,讲解到绘图原理中,画布 + 画笔