hdu 1007最近点对问题
先说下题意,很简单,给n个点的坐标,求距离最近的一对点之间距离的一半。第一行是一个数n表示有n个点,接下来n行是n个点的x坐标和y坐标,实数。
这个题目其实就是求最近点对的距离。主要思想就是分治。先把n个点按x坐标排序,然后求左边n/2个和右边n/2个的最近距离,最后合并。合并要重点说一下,比较麻烦。
首先,假设点是n个,编号为1到n。我们要分治求,则找一个中间的编号mid,先求出1到mid点的最近距离设为d1,还有mid+1到n的最近距离设为d2。这里的点需要按x坐标的顺序排好,并且假设这些点中,没有2点在同一个位置。(若有,则直接最小距离为0了)。
然后,令d为d1, d2中较小的那个点。如果说最近点对中的两点都在1-mid集合中,或者mid+1到n集合中,则d就是最小距离了。但是还有可能的是最近点对中的两点分属这两个集合,所以我们必须先检测一下这种情况是否会存在,若存在,则把这个最近点对的距离记录下来,去更新d。这样我们就可以得道最小的距离d了。
关键是要去检测最近点对,理论上每个点都要和对面集合的点匹配一次,那效率还是不能满足我们的要求。所以这里要优化。怎么优化呢?考虑一下,假如以我们所选的分割点mid为界,如果某一点的横坐标到点mid的横坐标的绝对值超过d1并且超过d2,那么这个点到mid点的距离必然超过d1和d2中的小者,所以这个点到对方集合的任意点的距离必然不是所有点中最小的。
所以我们先把在mid为界左右一个范围内的点全部筛选出来,放到一个集合里。筛选好以后,当然可以把这些点两两求距离去更新d了,不过这样还是很慢,万一满足条件的点很多呢。这里还得继续优化。首先把这些点按y坐标排序。假设排序好以后有cnt个点,编号为0到cnt-1。那么我们用0号去和1到cnt-1号的点求一下距离,然后1号和2到cnt-1号的点求一下距离。。。如果某两个点y轴距离已经超过了d,这次循环就可以直接break了,开始从下一个点查找了.
代码:
<span style="font-family:FangSong_GB2312;font-size:18px;">#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
int n;
struct node
{
double x;
double y;
}p[];
int a[];
double cmpx(node a,node b)
{
return a.x<b.x;
}
double cmpy(int a,int b)
{
return p[a].y<p[b].y;
}
double min(double a,double b)
{
return a<b?a:b;
}
double dis(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double find(int l,int r)
{
if(r==l+)
return dis(p[l],p[r]);
if(l+==r)
return min(dis(p[l],p[r]),min(dis(p[l],p[l+]),dis(p[l+],p[r])));
int mid=(l+r)>>;
double ans=min(find(l,mid),find(mid+,r));
int i,j,cnt=;
for(i=l;i<=r;i++)
{
if(p[i].x>=p[mid].x-ans&&p[i].x<=p[mid].x+ans)
a[cnt++]=i;
}
sort(a,a+cnt,cmpy);
for(i=;i<cnt;i++)
{
for(j=i+;j<cnt;j++)
{
if(p[a[j]].y-p[a[i]].y>=ans) break;
ans=min(ans,dis(p[a[i]],p[a[j]]));
}
}
return ans;
}
int main()
{
int i; while(scanf("%d",&n)!=EOF)
{
if(!n) break;
for(i=;i<n;i++)
scanf("%lf %lf",&p[i].x,&p[i].y);
sort(p,p+n,cmpx);
printf("%.2lf%\n",find(,n-)/);
}
return ;
} </span>
hdu 1007最近点对问题的更多相关文章
- zoj 2107&&hdu 1007最近点对问题
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1107 Quoit Design Time Limit: 5 Seconds ...
- hdu 1007 最近点对问题(Splay解法)
为什么要写这个题..经典啊,当然,别以为我用分治做的,不过主要思想还是那神奇的六个点共存(一个h*2h的矩形中最多能放下多少个点使得两两距离不超过h) 其实我是在这里看到的 http://commun ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU 1007 Quoit Design 平面内最近点对
http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...
- HDU 1007:Quoit Design(分治求最近点对)
http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:平面上有n个点,问最近的两个点之间的距离的一半是多少. 思路:用分治做.把整体分为左右两个部分,那么 ...
- HDU 1007(套圈 最近点对距离)
题意是求出所给各点中最近点对的距离的一半(背景忽略). 用分治的思想,先根据各点的横坐标进行排序,以中间的点为界,分别求出左边点集的最小距离和右边点集的最小距离,然后开始合并,分别求左右点集中各点与中 ...
- hdu 1007 Quoit Design(分治法求最近点对)
大致题意:给N个点,求最近点对的距离 d :输出:r = d/2. // Time 2093 ms; Memory 1812 K #include<iostream> #include&l ...
- HDU 1007 Quoit Design(计算几何の最近点对)
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
随机推荐
- idea中pom.xml关于oracle配置
由于Oracle授权问题,Maven3不提供Oracle JDBC driver,为了在Maven项目中应用Oracle JDBC driver,必须手动添加到本地仓库. Orace驱动的下载:htt ...
- HDUOJ---2112HDU Today
HDU Today Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- Megcup 2017 决赛第一题 规则
2017Megcup 2017Megcup决赛第三题题解 只做出了一道题,虽然慢慢地退出了前128名,但还是要记录一下. 10点钟开始,一看第一题很熟悉,因为研究过格点图中电流问题,其实就是求解线性方 ...
- shell脚本条件判断
http://blog.csdn.net/ws_zll/article/details/7515310
- SSL原理
http://blog.csdn.net/terryzero/article/details/5921791SSL的原理以前一直很模糊,看了下面这篇文章后清楚了许多,为了方便以后的回顾,所以转载下 R ...
- Java虚拟机学习 - 对象内存分配与回收 ( 5 )
对象优先在Eden上分配 大多数情况下,对象优先在新生代Eden区域中分配.当Eden内存区域没有足够的空间进行分配时,虚拟机将触发一次 Minor GC(新生代GC).Minor GC期间虚拟机将E ...
- 图标、图片、logo地址
阿里通信图标库 http://www.iconfont.cn/collections/show/29
- android语音识别技术
今天从网上找了个例子实现了语音识别,个人感觉挺好玩的,就把代码贴出来与大家分享下: Android中主要通过RecognizerIntent来实现语音识别,其实代码比较简单,但是如果找不到设置,就 ...
- 管道读写规则和Pipe Capacity、PIPE_BUF
一.当没有数据可读时 O_NONBLOCK disable:read调用阻塞,即进程暂停执行,一直等到有数据来到为止. O_NONBLOCK enable:read调用返回-1,errno值为EAGA ...
- C/S程序的一般流程和基本socket函数
一.基于TCP协议的网络程序 下图是基于TCP协议的客户端/服务器程序的一般流程: 服务器调用socket().bind().listen()完成初始化后,调用accept()阻塞等待,处于监听端口的 ...