Description

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E

心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人

,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某

个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

Input

输入的第一行包含一个正整数P,表示模;

第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;

以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

Output

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

Sample Input

100

4 2

1

2

Sample Output

12

【样例说明】

下面是对样例1的说明。

以“/”分割,“/”前后分别表示送给第一个人和第二个人的礼物编号。12种方案详情如下:

1/23 1/24 1/34

2/13 2/14 2/34

3/12 3/14 3/24

4/12 4/13 4/23

【数据规模和约定】

设P=p1^c1 * p2^c2 * p3^c3 * … *pt ^ ct,pi为质数。

对于100%的数据,1≤n≤109,1≤m≤5,1≤pici≤105。

Solution

推出求答案的式子:

\(ans=C_{n}^{w_1}C_{n-w_1}^{w_2}C_{n-w_1-w_2}^{w_3}...\)

看 \(n\) 的范围,1e9,那就是要扩展Lucas了

然后?好像就是扩展Lucas的模板题了。。中间用CRT合并

不会扩展Lucas的看这里

(PS:如果把式子拆开,化成这样 \(ans=\frac{n!}{w1!w2!w3!.....(n-\sum_{i=1}^nw_i)!}\mod p)\),是不是可以更快呢?虽然复杂度是一样的)

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXM=10;
int p,w[MAXM];
ll ans=1;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline ll qexp(ll a,ll b,ll n)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%n;
a=a*a%n;
b>>=1;
}
return res;
}
inline ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
ll r=exgcd(b,a%b,x,y);
ll t=x;
x=y;
y=t-(a/b)*y;
return r;
}
inline ll fac(ll n,ll pi,ll pk)
{
if(!n)return 1;
ll res=1;
for(register ll i=2;i<=pk;++i)
if(i%pi)(res*=i)%=pk;
res=qexp(res,n/pk,pk);
for(register ll i=2;i<=n%pk;++i)
if(i%pi)(res*=i)%=pk;
return res*fac(n/pi,pi,pk)%pk;
}
inline ll inv(ll n,ll Mod)
{
ll d,x,y;
exgcd(n,Mod,x,y);
return (x+Mod)%Mod==0?Mod:(x+Mod)%Mod;
}
inline ll C(ll n,ll m,ll pi,ll ki,ll pk)
{
if(n<m)return 0;
ll Mul1=fac(n,pi,pk),Mul2=fac(m,pi,pk),Mul3=fac(n-m,pi,pk);
ll k=0;
for(register ll i=n;i;i/=pi)k+=i/pi;
for(register ll i=m;i;i/=pi)k-=i/pi;
for(register ll i=n-m;i;i/=pi)k-=i/pi;
return Mul1*inv(Mul2,pk)%pk*inv(Mul3,pk)%pk*qexp(pi,k,pk)%pk;
}
inline ll CRT(ll B,ll W)
{
return B*inv(p/W,W)%p*(p/W)%p;
}
inline ll exLucas(ll n,ll m)
{
ll res=0,tmp=p;
for(register ll i=2;i<=tmp;++i)
if(tmp%i==0)
{
ll ki=0,pk=1;
while(tmp%i==0)tmp/=i,pk*=i,ki++;
(res+=CRT(C(n,m,i,ki,pk),pk))%=p;
}
return res;
}
int main()
{
read(p);
int n,m,tot=0;
read(n);read(m);
for(register int i=1;i<=m;++i)read(w[i]),tot+=w[i];
if(tot>n)
{
puts("Impossible");
return 0;
}
for(register int i=1;i<=m;++i)(ans*=exLucas(n,w[i]))%=p,n-=w[i];
write(ans,'\n');
return 0;
}

【刷题】BZOJ 2142 礼物的更多相关文章

  1. BZOJ 2142: 礼物 [Lucas定理]

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1294  Solved: 534[Submit][Status][Discuss] ...

  2. BZOJ 2142 礼物 组合数学 CRT 中国剩余定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] ...

  3. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

  4. bzoj 2142 礼物——扩展lucas模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...

  5. bzoj 2142: 礼物【中国剩余定理+组合数学】

    参考:http://blog.csdn.net/wzq_qwq/article/details/46709471 首先推组合数,设sum为每个人礼物数的和,那么答案为 \[ ( C_{n}^{sum} ...

  6. BZOJ 2142: 礼物

    模非素数下的排列组合,简直凶残 调着调着就过了= = 都不知道怎么过的= = 直接上链接http://hi.baidu.com/aekdycoin/blog/item/147620832b567eb4 ...

  7. BZOJ.2142.礼物(扩展Lucas)

    题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...

  8. BZOJ 2142 礼物 数论

    这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. ...

  9. 【刷题】BZOJ 2407 探险

    Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...

随机推荐

  1. Struts 2(五):输入校验 & 校验框架

    第一节 Struts2输入校验 1.1 输入校验的重要性 输入校验分为客户端校验和服务器端校验.客户端校验用来过滤用户的错误操作,一般使用JavaScript代码实现.服务器端校验用来防止非法用户的恶 ...

  2. web中简单wcf的创建和应用

    以前做过wcf控制台作为宿主,今天回顾一下,不过公司用的web直接创建就把这种过程写下来. 第一步:创建wcf页面如图 第二步:创建wcf时候已经自动生成了接口(契约)和实现类(契约),但是我们可以修 ...

  3. Maven学习(十五)-----Maven常用命令

    一.Maven常用命令 1.1.Maven 参数 -D 传入属性参数  -P 使用pom中指定的配置  -e 显示maven运行出错的信息  -o 离线执行命令,即不去远程仓库更新包  -X 显示ma ...

  4. JMeter测试WebSocket的经验总结

    最近有一个微信聊天系统的项目需要性能测试,既然是测试微信聊天,肯定绕不开websocket接口的测试,首选工具是Jmeter,网上能搜到现成的方法,但是网上提供的jar包往往不是最新的,既然是用最新版 ...

  5. java计算工龄

    计算工龄原则:若是2000-10-12作为开始工作时间,则到下一年的2001-10-13算为一年.有个bug,不满一年的工龄是错误的. import java.util.Date;import jav ...

  6. Matplotlib外观和基本配置笔记

    title: matplotlib 外观和基本配置笔记 notebook: Python tags:matplotlib --- 参考资料,如何使用matplotlib绘制出数据图形,参考另一篇mat ...

  7. python打印图形大全(详解)

    ,): shixin=chr() print(shixin) -------------------结果:2) for i in range(0,10): shixin=chr(9679) print ...

  8. Kickstart 安装centos7

    以前是怎么安装系统的 光盘(ISO文件,光盘的镜像文件)===>每一台物理机都得给一个光驱,如果用外置光驱的话,是不是每台机器都需要插一下 U盘:ISO镜像刻录到U盘==>需要每台机器都需 ...

  9. USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  10. c# WPS DLL及其调用

    1.dll分享(含xsl及docx的dll) 链接:https://pan.baidu.com/s/1c1ImV14OndmvIb4W-_WL2A 密码:d2rx 2.方法: 1.先在类的前面(类外面 ...