【BZOJ3566】概率充电器(动态规划)
【BZOJ3566】概率充电器(动态规划)
题面
Description
著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!
”
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?
Input
第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。
Output
输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数
Sample Input
3
1 2 50
1 3 50
50 0 0
Sample Output
1.000000
HINT
对于 100%的数据,n≤500000,0≤p,qi≤100。
题解
很明显要求出所有点的通电的概率,直接相加即可
但是这个概率不好算,我们反过来,求每个点不通电的概率。
设\(f[i]\)表示\(i\)不通电的概率
\(f[u]=(1-q[u])*\prod_v(f[v]+(1-f[v])*(1-p[u,v]))\)
但是这样子少考虑了父亲的影响
于是再做一遍\(dp\),考虑父亲节点的影响就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 555555
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;double w;}e[MAX<<1];
int h[MAX],cnt=1,n;
inline void Add(int u,int v,double w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
double f[MAX],g[MAX],q[MAX],pf[MAX];
void dfs(int u,int ff)
{
f[u]=1.0-q[u];int tt=0;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff)continue;
pf[v]=e[i].w;dfs(v,u);
double P=f[v]+(1-f[v])*(1-e[i].w);
if(P>0)f[u]=f[u]*P;
else ++tt;
}
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff)continue;
double P=f[v]+(1-f[v])*(1-e[i].w);
if(P>0){if(!tt)g[v]=f[u]/P;}
else if(tt==1)g[v]=f[u];
}
if(tt)f[u]=0;
}
void DFS(int u,int ff)
{
if(ff)
g[u]=g[u]*(g[ff]+(1-g[ff])*(1-pf[ff]));
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=ff)DFS(e[i].v,u);
}
int main()
{
n=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read(),p=read();
Add(u,v,0.01*p);Add(v,u,0.01*p);
}
for(int i=1;i<=n;++i)q[i]=0.01*read();
dfs(1,0);DFS(1,0);
for(int i=1;i<=n;++i)f[i]=f[i]*(g[i]+(1-g[i])*(1-pf[i]));
double ans=0;
for(int i=1;i<=n;++i)ans+=1.0-f[i];
printf("%.6lf\n",ans);
return 0;
}
【BZOJ3566】概率充电器(动态规划)的更多相关文章
- BZOJ3566 SHOI2014 概率充电器 【概率DP】
BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...
- 【BZOJ3566】[SHOI2014]概率充电器 期望+树形DP
[BZOJ3566][SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线 ...
- BZOJ3566: [SHOI2014]概率充电器 树形+概率dp
3566: [SHOI2014]概率充电器 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1888 Solved: 857[Submit][Stat ...
- BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...
- 【bzoj3566】[SHOI2014]概率充电器 树形概率dp
题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的 ...
- 【bzoj3566】 [SHOI2014]概率充电器
*题目描述: 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可 ...
- BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- 【BZOJ】3566: [SHOI2014]概率充电器
[算法]树型DP+期望DP [题意]一棵树上每个点均有直接充电概率qi%,每条边有导电概率pi%,问期望有多少结点处于充电状态? [题解]引用自:[BZOJ3566][SHOI2014]概率充电器 树 ...
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
随机推荐
- commons fileupload上传报错
这个问题困扰我好久了一直没有找到解决方法,先记录下来. 生产环境(简称A)上老是出错,而测试环境(简称B)一切正常. 我们的框架是JAVA语言编写,基于struts1技术总监自己搭的框架,我在stru ...
- python学习笔记01 --------------hello world 与变量。
1.第一个程序: print('hello world') 输出结果: hello world 2.变量 2.1 变量的作用: 把程序运算的中间结果临时存到内存里,以备后面的代码继续调用. 2.2 变 ...
- TW实习日记:第七天
今天早上,将项目的两个企业微信接口:登录和应用消息发送接口,做了最后的收尾工作,把目前我能解决的问题算是基本都解决了.早上还开了一个会,大意是组长封装了许多组件叫我们使用,在不断的使用中打磨组件的可用 ...
- 433. Number of Islands【LintCode java】
Description Given a boolean 2D matrix, 0 is represented as the sea, 1 is represented as the island. ...
- IT视频课程集
马哥Linux培训视频课程:http://pan.baidu.com/s/1pJwk7dp Oracle.大数据系列课程:http://pan.baidu.com/s/1bnng3yZ 天善智能BI培 ...
- android开发问题 Failed to pull selection 菜鸟记录
在eclipse中开发创建了一个sqlite数据库文件,为了查看数据库文件的内容,决定复制到PC上一看究竟,位置在data……里 当我点击ddms文件浏览里的pull a file from the ...
- 如何使用HtmlTestRunner让自动化测试报告内容更丰富
原文出自:http://www.cnblogs.com/tsbc/p/4128150.html 简述 使用selenium webdriver + Python做自动化测试,执行完成后要生成测试报告, ...
- NumPy常用函数总结
转载:https://www.cnblogs.com/hd-chenwei/p/6832732.html NumPy库总包含两种基本的数据类型:矩阵和数组,矩阵的使用类似Matlab,本实例用得多的是 ...
- Java微笔记(7)
String 类常用方法 注意点: 字符串 str 中字符的索引从0开始,范围为 0 到 str.length()-1 使用 indexOf 进行字符或字符串查找时,如果匹配返回位置索引:如果没有匹配 ...
- 新手必备!11个强大的 Visual Studio 调试技巧
简介 调试是软件开发周期中很重要的一部分.它具有挑战性,同时也很让人疑惑和烦恼.总的来说,对于稍大一点的程序,调试是不可避免的.最近几年,调试工具的发展让很多调试任务变的越来越简单和省时. 这篇文章总 ...