Mondriaan's Dream
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 16771   Accepted: 9683

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.


Expert as he was in this material, he saw at a glance that he'll
need a computer to calculate the number of ways to fill the large
rectangle whose dimensions were integer values, as well. Help him, so
that his dream won't turn into a nightmare!

Input

The
input contains several test cases. Each test case is made up of two
integer numbers: the height h and the width w of the large rectangle.
Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For
each test case, output the number of different ways the given rectangle
can be filled with small rectangles of size 2 times 1. Assume the given
large rectangle is oriented, i.e. count symmetrical tilings multiple
times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205

Source

 
第一次做状压题目,没怎么优化就是暴力递推。
对于每个格子我们有这么两种可能: 
第一,这个格子被竖着的砖块覆盖
第二,这个格子被横着的砖块覆盖
我们不妨用0/1来表示这个状态,0表示这是一个竖着放置的砖块的上方部分,1表示横向覆盖或者被上方竖着覆盖。
之所以用0表示竖放的上方是因为竖着放会对下一行的放置造成影响,而横着放显然不会,我们在放置下一行的时候需要知道上一行的状态才可,
所以遇见上一行这个位置是0就表示这个格子已经被覆盖了的状态,利用这个来判断冲突放置。
(显然每个格子都要被覆盖,我们如果用01表示覆盖与非覆盖的状态显然是无意义的,要从放置方式着手,这一点当时想了好久= =)
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define LL long long
LL dp[2][2050];
LL ans[15][15];
bool check(int x,int i)
{  return x&(1<<i); }
bool comp(int A,int B,int N)
{
 int i=0,j,k;
 while(i<N){
    if(!check(A,i)){
        if(!check(B,i)) return 0;
        i++;
    }
    else{
        if(!check(B,i)) i++;
        else {
            if(i==N-1||!check(A,i+1)||!(check(A,i+1)&&check(B,i+1))) return 0;
            else i+=2;
        }
    }
 }
 return 1;
}
void solve(int N,int M)
{
 if(ans[N][M]+1) {printf("%lld\n",ans[N][M]);return;}
 memset(dp,0,sizeof(dp));
 dp[0][(1<<N)-1]=1;
 int cur=1;
 for(int i=1;i<=M;++i){
    for(int j=0;j<(1<<N);++j){dp[cur][j]=0;
        for(int k=0;k<(1<<N);++k){
            if(comp(j,k,N)) dp[cur][j]+=dp[cur^1][k];
        }
    }
    cur^=1;
 }
 ans[N][M]=ans[M][N]=dp[cur^1][(1<<N)-1];
 printf("%lld\n",dp[cur^1][(1<<N)-1]);
}
int main()
{
    memset(ans,-1,sizeof(ans));
    int N,M,i,j,k,l;
    while(scanf("%d%d",&N,&M)!=EOF&&(N||M)){
        if(N*M%2==1) {puts("0");continue;}
        if(N>M) {swap(N,M);}
        solve(N,M);  //M行N列
    }
    return 0;
}

POJ 2411 状压DP经典的更多相关文章

  1. POJ 2411 状压dp

    F - Mondriaan's Dream Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I6 ...

  2. POJ 3254 (状压DP) Corn Fields

    基础的状压DP,因为是将状态压缩到一个整数中,所以会涉及到很多比较巧妙的位运算. 我们可以先把输入中每行的01压缩成一个整数. 判断一个状态是否有相邻1: 如果 x & (x << ...

  3. poj 1170状压dp

    题目链接:https://vjudge.net/problem/POJ-1170 题意:输入n,表示有那种物品,接下来n行,每行a,b,c三个变量,a表示物品种类,b是物品数量,c代表物品的单价.接下 ...

  4. [NOI2001] 炮兵阵地 (状压Dp经典例题)

    如果您的电脑比较优秀能在 1sec 内跑过 2^1000 的时间复杂度,不妨你可以尝试一下,其实实际时间复杂度远远少于 2^1000,作为骗分不错的选择QAQ,然后我们来分析一下正解: 很显然此题是一 ...

  5. POJ 3254 状压DP

    题目大意: 一个农民有一片n行m列 的农场   n和m 范围[1,12]  对于每一块土地 ,1代表可以种地,0代表不能种. 因为农夫要种草喂牛,牛吃草不能挨着,所以农夫种菜的每一块都不能有公共边. ...

  6. poj 1185(状压dp)

    题目链接:http://poj.org/problem?id=1185 思路:状态压缩经典题目,dp[i][j][k]表示第i行状态为j,(i-1)行状态为k时最多可以放置的士兵个数,于是我们可以得到 ...

  7. poj 3254 状压dp入门题

    1.poj 3254  Corn Fields    状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...

  8. poj 3311 状压DP

    经典TSP变形 学到:1.floyd  O(n^3)处理随意两点的最短路 2.集合的位表示,我会在最后的总结出写出.注意写代码之前一定设计好位的状态.本题中,第0位到第n位分别代表第i个城市,1是已经 ...

  9. 二维状压DP经典题

    炮兵阵地 题目链接 题目大意:在n*m的地图上放置炮兵,每个炮兵的攻击范围是上下左右两格内,有两种不同的地形,山地(用"H" 表示),平原(用"P"表示),只有 ...

随机推荐

  1. codeforces#510 Div2

    pre过了三题 后来A题被hack了 B题终测挂了 两题其实都是有一个小细节没有处理好 中间C还因为cinT了一次 唉本来打的还不错的 还是太菜了 继续加油吧 A-Benches 有n张椅子 原来第i ...

  2. 关于java web的笔记2018-01-12

    需求:1.写一个商品类,有商品编号.商品名称.商品分类.商品单价属性.2.写一个商品条目信息类,有商品和数量两个属性,有商品总价格方法.3.写一个购物车类,有添加商品方法.查看订单信息,删除商品,修改 ...

  3. Python实现进程同步和通信

    转自:https://blog.csdn.net/u014556057/article/details/66974452

  4. python调用API

    相信做过自动化运维的同学都用过API接口来完成某些动作.API是一套成熟系统所必需的接口,可以被其他系统或脚本来调用,这也是自动化运维的必修课. 本文主要介绍Python中调用API的几种方式,下面是 ...

  5. kubernetes实战(三):k8s v1.11.1 持久化EFK安装

    1.镜像下载 所有节点下载镜像 docker pull kibana: docker tag kibana: docker.elastic.co/kibana/kibana: docker pull ...

  6. 解决redis远程连接不上的问题

    解决redis远程连接不上的问题 redis现在的版本开启redis-server后,redis-cli只能访问到127.0.0.1,因为在配置文件中固定了ip,因此需要修改redis.conf(有的 ...

  7. mysql 数据操作 多表查询 多表连接查询 笛卡尔积

    1 交叉连接:不适用任何匹配条件.生成笛卡尔积 所有员工都和四个部门 做了对应关系 mysql> select * from employee,department; +----+------- ...

  8. python模块之signal信号

    简介 作用:发送和接收异步系统信号 信号是一个操作系统特性,它提供了一个途径可以通知程序发生了一个事件并异步处理这个事件.信号可以由系统本身生成,也可以从一个进程发送到另一个进程. 由于信号会中断程序 ...

  9. MySQL创建索引命令

    MySQL索引类型 普通索引 创建索引的方式 -- 直接新建索引 CREATE INDEX indexName ON mytable(username(length)) -- 修改表结构新建索引 AL ...

  10. cocos进阶教程(3)Lua加密技术

    如果开发者不想让游戏中的资源或脚本文件轻易的暴露给其他人,一般会采用对文件进行加密的方式来保护文件或资源被盗用.Quick-Cocos2d-x 为开发者提供了xxtea加密算法,用来对脚本文件及资源进 ...