LightOJ 1220 Mysterious Bacteria(唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1220
Time Limit:500MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
Dr. Mob has just discovered a Deathly Bacteria. He named it RC-01. RC-01 has a very strange reproduction system. RC-01 lives exactly x days. Now RC-01 produces exactly p new deadly Bacteria where x = bp (where b, p are integers). More generally, x is a perfect pth power. Given the lifetime x of a mother RC-01 you are to determine the maximum number of new RC-01 which can be produced by the mother RC-01.
Input
Input starts with an integer T (≤ 50), denoting the number of test cases.
Each case starts with a line containing an integer x. You can assume that x will have magnitude at least 2 and be within the range of a 32 bit signed integer.
Output
For each case, print the case number and the largest integer p such that x is a perfect pth power.
Sample Input
3
17
1073741824
25
Sample Output
Case 1: 1
Case 2: 30
Case 3: 2
题目大意:
给你一个数x = b^p,求p的最大值
x = p1^x1*p2^x2*p3^x3*...*ps^xs
开始我以为是找x1、x2、... 、xs中的最大值,后来发现想错了,x = b^p, x只有一个因子的p次幂构成
如果x = 12 = 2^2*3^1,要让x = b^p,及12应该是12 = 12^1
所以p = gcd(x1, x2, x3, ... , xs);
比如:24 = 2^3*3^1,p应该是gcd(3, 1) = 1,即24 = 24^1
324 = 3^4*2^2,p应该是gcd(4, 2) = 2,即324 = 18^2
本题有一个坑,就是x可能为负数,如果x为负数的话,x = b^q, q必须使奇数,所以将x转化为正数求得的解如果是偶数的话必须将其一直除2转化为奇数
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm> using namespace std; const int N = 1e5 +;
const int INF = 0x3f3f3f3f;
typedef long long ll; int prime[N], k;
bool Isprime[N]; void Prime()
{
k = ;
memset(Isprime, true, sizeof(Isprime));
prime[] = false;
for(int i = ; i < N ; i++)
{
if(Isprime[i])
{
prime[k++] = i;
for(int j = i ; 1LL * i * j < N ; j++)
Isprime[i * j] = false;
}
}
} int gcd(int a, int b)
{
return a % b == ? b : gcd(b, a % b);
} int main()
{
int t, p = ;
ll n;//n要用long long 定义,如果n是负数的话会超时
Prime();
scanf("%d", &t);
while(t--)
{
p++;
scanf("%lld", &n);
int f = ; if(n < )
{
n = - n;//int定义n这儿会卡住半天出不来,就会超时,为什么这样我也不知道
f = ;
}
int x, ans = ;
for(int i = ; i < k && prime[i] * prime[i] <= n ; i++)
{
if(n % prime[i] == )
{
x = ;
while(n % prime[i] == )
{
x++;
n /= prime[i];
}
if(ans == )
ans = x;
else
ans = gcd(ans, x);
}
}
if(n > )
ans = gcd(ans, );
if(f == )
{
if(ans % == )
ans = ;
}
printf("Case %d: %d\n", p, ans);
}
return ;
}
/*
8
2147483647
-2147483648
32
-32
64
-64
4
-4 Output: Case 1: 1
Case 2: 31
Case 3: 5
Case 4: 5
Case 5: 6
Case 6: 3
Case 7: 2
Case 8: 1
*/
LightOJ 1220 Mysterious Bacteria(唯一分解定理 + 素数筛选)的更多相关文章
- LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...
- LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS Memor ...
- 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...
- LightOJ-1220 Mysterious Bacteria 唯一分解定理 带条件的最大公因数
题目链接:https://cn.vjudge.net/problem/LightOJ-1220 题意 给x=y^p,问p最大多少 注意x可能负数 思路 唯一分解定理,求各素因数指数的GCD 注意负数的 ...
- LightOj 1220 - Mysterious Bacteria (分解质因子x=b^p 中的 x 求最大的 p)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1220 题意:已知 x=bp 中的 x 求最大的 p,其中 x b p 都为整数 x = ...
- LightOj 1220 Mysterious Bacteria
题目大意: 给出一个x,求满足x = b^p,p最大是多少? 解题思路: x可以表示为:x = p1^e1 * p2^e2 * p3^e3 ....... * pn^en. p = gcd (e1,e ...
- LightOJ 1220 Mysterious Bacteria 水题
暴力就行了,找出素因子,正的最多是30,然后负的最多是31(这一点wa了一次) #include <cstdio> #include <iostream> #include & ...
- LightOj 1197 Help Hanzo (区间素数筛选)
题目大意: 给出T个实例,T<=200,给出[a,b]区间,问这个区间里面有多少个素数?(1 ≤ a ≤ b < 231, b - a ≤ 100000) 解题思路: 由于a,b的取值范围 ...
- LightOJ 1197 Help Hanzo(区间素数筛选)
E - Help Hanzo Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit ...
随机推荐
- vue简单介绍
最近在逛各大网站,论坛,以及像SegmentFault等编程问答社区,发现Vue.js异常火爆,重复性的提问和内容也很多,楼主自己也趁着这个大前端的热潮,着手学习了一段时间的Vue.js,目前用它正在 ...
- jsp 学习 第2步 - tag 使用
tag 类似 asp.net 用户控件,用于动态显示HTML 我首先在项目 /WebContent/WEB-INF/ 建立 tags目录 用于存放 tag文件 新建一个message.tag 文件 ...
- "sc.exe create/delete" - Create or Delete Services
"sc.exe" can also be used to create and delete services. If you want to create a new servi ...
- 【python 】装饰器 (多个参数的函数,带参数的装饰器)【转】
最简单的模板是这样的 #-*-coding:utf-8-*- def outer(func): def inner(): print 'before' func() print 'after' # r ...
- 迷你MVVM框架 avalonjs 学习教程9、类名操作
ms-class是avalon用得最多的几个绑定之一,也正因为如此其功能一直在扩充中.根据时期的不同,分为旧风格与新风格两种. 旧风格是指ms-class-xxx=”expr”,*ms-class-a ...
- 禁止ImageCapture自动启动
[禁止ImageCapture自动启动] 打开ImageCapture,点开左下角菜单,把Connecting this iPhone opens:的内容改为以下选项即可.
- gpg的使用
[gpg的使用] 在Linux系统中,gpg程序可以实现非对称加密. 下面简单介绍gpg命令的用法:一.创建密钥:$ gpg --gen-key Please select what kind of ...
- linux install jupyter notebook
install sudo pip install jupyter notebook start sudo jupyter notebook 一般,文件目录默认在你启动的位置.你可以在notebook里 ...
- python操作vmware
import pysphere from pysphere import VIServer host_ip = "200.200.173.45" username = " ...
- DNS BIND之rndc介绍及使用
rndc(Remote Name Domain Controllerr)是一个远程管理bind的工具,通过这个工具可以在本地或者远程了解当前服务器的运行状况,也可以对服务器进行关闭.重载.刷新缓存.增 ...