PostgreSQL在2016年9月发布了9.6版本,在该版本中新增了并行计算功能,目前PG支持的并行查询主要是顺序扫描(Sequencial Scans),并且支持部分链接查询(join)和聚合(aggregation)。

并行查询涉及的参数

max_worker_processes:决定了整个数据库集群允许启动多少个">work process(注意如果有standby,">standby的参数必须大于等于主库的参数值)。设置为0,表示不允许并行。

max_parallel_workers_per_gather: 最多会有多少个后台进程来一起完成当前查询,推荐值为">1-4。这些workers主要来自max_worker_processes(进程池的大小)。在">OLTP业务中,因为每个worker都会消耗同等的">work_mem等资源,可能会产生比较严重的争抢。

min_parallel_relation_size: 启用并行查询的最小数据表的大小,作为是否启用并行计算的条件之一,如果小于它,不启用并行计算。并不是所有小于它的表一定不会启用并行。">

parallel_setup_cost:表示启动woker process的启动成本,因为启动worker进程需要建立共享内存等操作,属于附带的额外成本。其值越小,数据库越有可能使用并行查询。">

parallel_tuple_costwoker进程处理完后的tuple要传输给上层node,即进程间查询结果的交换成本,即后台进程间传输一个元组的代价。其值越小,数据库越有可能使用并行。">

force_parallel_mode: 主要用于测试,on/true表示强制使用并行查询。">

parallel_workers:设置表级并行度,可在建表时设置,也可后期设置

PostgreSQL优化器计算并行度及如何决定使用并行

1、确定整个系统能开多少worker进程(max_worker_processes)

2、计算并行计算的成本,优化器根据CBO原则选择是否开启并行(parallel_setup_cost、parallel_tuple_cost)。

3、强制开启并行(force_parallel_mode)。

4、根据表级parallel_workers参数决定每个查询的并行度取最小值(parallel_workers,
max_parallel_workers_per_gather)

5、当表没有设置parallel_workers参数,并且表的大小大于min_parallel_relation_size时,由算法决定每个查询的并行度。

并行顺序扫描测试

什么是顺序操作">

顺序操作(同oracle中的全表扫描),意味着数据库会按顺序读取整张表,逐行确认是否符合查询条件。一般来说,当你关注给定查询语句的执行时间时,需要关注顺序操作。由以上可知,对于一个单表查询来说,顺序操作的时间复杂度为O(n)。对于时间敏感的查询,走索引是更好的选择,索引(默认的二叉树索引)有更好的时间复杂度O(log(n))。但使用索引是有代价的:在进行插入和更新操作时,需要花费额外的时间更新索引,并占用额外的内存和磁盘空间。因此,在一些情况下不使用索引,走顺序操作可能是更好的选择。以上这些需要根据实际情况取舍。

首先创建一个people表,只有id(主键)和age列:

postgres=# CREATETABLE people (id int PRIMARY KEY NOT NULL,
age int NOT NULL);

CREATE TABLE

postgres=# \d people

Table "public.people"

Column |Type   | Modifiers

-------+---------+-----------

id     |
integer | not null

age    | integer | not null

Indexes:

"people_pkey" PRIMARY KEY, btree (id)

插入一些数据。一千万行应该足以看到并行计算的用处。表中每个人的年龄取0~100的随机数。

postgres=# INSERTINTO people SELECT id, (random()*100)::integer AS
age FROM generate_series(1,10000000) AS id;

INSERT 0 10000000

现在尝试获取所有年龄为6岁的人,预计获取约百分之一的行。

postgres=# EXPLAINANALYZE SELECT * FROM people WHERE age =6;

QUERY PLAN

------------------------------------------------------------------------------------------------------------------

Seq Scan on people  (cost=0.00..169247.71 rows=104000 width=8) (actual
time=0.052..1572.701 rows=100310 loops=1)

Filter: (age = 6)

Rows Removed by Filter: 9899690

Planning time: 0.061 ms

Execution time: 1579.476 ms

(5 rows)

上面查询花了1579.476 ms。并行查询默认是禁用的。现在启用并行查询,允许PostgreSQL最多使用两个并行,然后再次运行该查询。

postgres=# SET
max_parallel_workers_per_gather = 2;

SET

postgres=# EXPLAINANALYZE SELECT * FROM people WHERE age =6;

QUERY PLAN

-----------------------------------------------------------------------------------------------------------------------------

Gather(cost=1000.00..107731.21 rows=104000 width=8) (actual
time=0.431..892.823 rows=100310 loops=1)

Workers Planned: 2

Workers Launched: 2

->Parallel Seq Scan on people(cost=0.00..96331.21 rows=43333 width=8) (actual
time=0.109..862.562 rows=33437 loops=3)

Filter: (age = 6)

Rows Removed by Filter: 3299897

Planning time: 0.133 ms

Execution time: 906.548 ms

(8 rows)

使用并行查询后,同样语句查询事件缩减到906.548 ms,还不到原来时间的一半。启用并行查询收集数据并将“收集”的数据进行聚合会带来额外的开销。每增加一个并行,开销也随之增大。有时更多的并行并不能改善查询性能。但为了验证并行的性能,你需要在数据库服务器上进行试验,因为服务器拥有更多的CPU核心。

不是所有的查询都会使用并行。例如尝试获取年龄低于50的数据(这将返回一半数据)

postgres=# EXPLAINANALYZE SELECT * FROM people WHERE age <50;

QUERY PLAN

--------------------------------------------------------------------------------------------------------------------

Seq Scan on people  (cost=0.00..169247.71 rows=4955739 width=8) (actual time=0.079..1957.076 rows=4949330 loops=1)

Filter: (age < 50)

Rows Removed by Filter: 5050670

Planning time: 0.097 ms

Execution time: 2233.848 ms

(5 rows)

上面的查询返回表中的绝大多数数据,没有使用并行,为什么会这样呢? 当查询只返回表的一小部分时,并行计算进程启动、运行(匹配查询条件)及合并结果集的开销小于串行计算的开销。当返回表中大部分数据时,并行计算的开销可能会高于其所带来的好处。

如果要强制使用并行,可以强制设置并行计算的开销为0,如下所示:

postgres=# SET
parallel_tuple_cost TO 0;

SET

postgres=# EXPLAINANALYZE SELECT * FROM people WHERE age <50;

QUERY PLAN

----------------------------------------------------------------------------------------------------------------------------------

Gather(cost=1000.00..97331.21 rows=4955739 width=8) (actual time=0.424..3147.678 rows=4949330 loops=1)

Workers Planned: 2

Workers Launched: 2

->Parallel Seq Scan on people(cost=0.00..96331.21 rows=2064891 width=8) (actual time=0.082..1325.310 rows=1649777 loops=3)

Filter: (age < 50)

Rows Removed by Filter: 1683557

Planning time: 0.104 ms

Execution time: 3454.690 ms

(8 rows)

从上面结果中可以看到,强制并行后,查询语句执行时间由2233.848 ms增加到3454.690 ms,说明并行计算的开销是真实存在的。

聚合函数的并行计算测试

测试之前,现重置一下现有环境

postgres=# SET
parallel_tuple_cost TO DEFAULT;

SET

postgres=# SET
max_parallel_workers_per_gather TO 0;

SET

下面语句在未开启并行时,计算所有人的平均年龄

postgres=# EXPLAINANALYZE SELECT avg(age) FROM people;

QUERY
PLAN

---------------------------------------------------------------------------------------------------------------------------

Aggregate  (cost=169247.72..169247.73 rows=1 width=32) (actual
time=2751.862..2751.862 rows=1 loops=1)

->Seq Scan on people  (cost=0.00..144247.77 rows=9999977 width=4) (actual time=0.054..1250.670 rows=10000000 loops=1)

Planning time: 0.054 ms

Execution time: 2751.905 ms

(4 rows)

开启并行后,再次计算平均年龄

postgres=# SET
max_parallel_workers_per_gather TO 2;

SET

postgres=# EXPLAINANALYZE SELECT avg(age) FROM people;

QUERY PLAN

---------------------------------------------------------------------------------------------------------------------------

Finalize Aggregate  (cost=97331.43..97331.44 rows=1 width=32) (actual
time=1616.346..1616.346 rows=1 loops=1)

->Gather  (cost=97331.21..97331.42 rows=2 width=32) (actual
time=1616.143..1616.316 rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

->  Partial Aggregate  (cost=96331.21..96331.22 rows=1 width=32) (actual
time=1610.785..1610.785 rows=1 loops=3)

->  Parallel Seq Scan on people  (cost=0.00..85914.57 rows=4166657 width=4) (actual time=0.067..957.355 rows=3333333 loops=3)

Planning time: 0.248 ms

Execution time: 1619.181 ms

(8 rows)

从上面两次查询中可以看到,并行计算将查询时间由2751.905 ms降低到了1619.181ms。

join并行测试

创建测试环境。创建一个1000万行的pets表。

postgres=# CREATETABLE pets (owner_id int NOT NULL, species character(3) NOTNULL);

postgres=# CREATEINDEX pets_owner_id ON pets (owner_id);

postgres=# INSERTINTO pets SELECT (random()*10000000)::integer AS owner_id, ('{cat,dog}'::text[])[ceil(random()*2)] as
species FROM generate_series(1,10000000);

不启用并行计算,执行join语句

postgres=# SET
max_parallel_workers_per_gather TO 0;

SET

postgres=# EXPLAINANALYZE SELECT * FROM pets JOIN people ON
pets.owner_id = people.id WHERE pets.species = 'cat' AND
people.age = 18;

QUERY PLAN

------------------------------------------------------------------------------------------------------------------------------

Hash Join  (cost=171025.88..310311.99 rows=407 width=28) (actual
time=1627.973..5963.378 rows=49943 loops=1)

Hash Cond: (pets.owner_id =
people.id)

->Seq Scan on pets  (cost=0.00..138275.00 rows=37611 width=20) (actual
time=0.050..2784.238 rows=4997112 loops=1)

Filter: (species = 'cat'::bpchar)

Rows Removed by Filter: 5002888

->Hash  (cost=169247.71..169247.71 rows=108333 width=8) (actual
time=1626.987..1626.987 rows=100094 loops=1)

Buckets: 131072  Batches: 2  Memory Usage: 2974kB

->  Seq Scan on people  (cost=0.00..169247.71 rows=108333 width=8) (actual
time=0.045..1596.765 rows=100094 loops=1)

Filter: (age = 18)

Rows Removed by
Filter: 9899906

Planning time: 0.466 ms

Execution time: 5967.223 ms

(12 rows)

以上查询花费这几乎是5967.223 ms,下面启用并行计算

postgres=# SET
max_parallel_workers_per_gather TO 2;

SET

postgres=# EXPLAINANALYZE SELECT * FROM pets JOIN people ON
pets.owner_id = people.id WHERE pets.species = 'cat' AND
people.age = 18;

QUERY PLAN

-------------------------------------------------------------------------------------------------------------------------------------

Gather(cost=1000.43..244061.39 rows=53871 width=16) (actual
time=0.304..1295.285 rows=49943 loops=1)

Workers Planned: 2

Workers Launched: 2

->Nested Loop  (cost=0.43..237674.29 rows=22446 width=16) (actual
time=0.347..1274.578 rows=16648 loops=3)

->  Parallel Seq Scan on people  (cost=0.00..96331.21 rows=45139 width=8) (actual
time=0.147..882.415 rows=33365 loops=3)

Filter: (age = 18)

Rows Removed by
Filter: 3299969

->  Index Scan using pets_owner_id on
pets  (cost=0.43..3.12 rows=1 width=8) (actual
time=0.010..0.011 rows=0 loops=100094)

Index Cond: (owner_id =
people.id)

Filter: (species = 'cat'::bpchar)

Rows Removed by
Filter: 1

Planning time: 0.274 ms

Execution time: 1306.590 ms

(13 rows)

由以上可知,查询语句的执行时间从5967.223 ms降低到1306.590 ms。

PostgreSQL9.6的新特性并行查询的更多相关文章

  1. java8新特性——并行流与顺序流

    在我们开发过程中,我们都知道想要提高程序效率,我们可以启用多线程去并行处理,而java8中对数据处理也提供了它得并行方法,今天就来简单学习一下java8中得并行流与顺序流. 并行流就是把一个内容分成多 ...

  2. Java8的新特性--并行流与串行流

    目录 写在前面 Fork/Join框架 Fork/Join框架与传统线程池的区别 传统的线程池 Fork/Join框架 Fork/Join框架的使用 Java8中的并行流 写在前面 我们都知道,在开发 ...

  3. 总结CSS3新特性(媒体查询篇)

    CSS3的媒体查询是对CSS2媒体类型的扩展,完善; CSS2的媒体类型仅仅定义了一些设备的关键字,CSS3的媒体查询进一步扩展了如width,height,color等具有取值范围的属性; medi ...

  4. Java8新特性 并行流与串行流 Fork Join

    并行流就是把一个内容分成多个数据块,并用不同的线程分 别处理每个数据块的流. Java 8 中将并行进行了优化,我们可以很容易的对数据进行并 行操作. Stream API 可以声明性地通过 para ...

  5. Java8新特性 - 并行流与串行流

    并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流. Java8中将并行进行了优化,我们可以很容易的对数据进行并行操作.Stream API可以声明性地通过parallel()和 ...

  6. java 8新特性 并行流

    使用并行流,提高cpu利用率,提高运算速度 /** * java 8并行流 * 底层运用fork join框架 */ @Test public void test(){ Instant start = ...

  7. HTML5和CSS3的新特性

    html5的新特性 添加了用于媒介回放的 <video>,<audio> 元素 添加了语义标签譬如 header.footer.nav 等等元素 添加了用于绘画的 canvas ...

  8. ElasticSearch 5学习(10)——结构化查询(包括新特性)

    之前我们所有的查询都属于命令行查询,但是不利于复杂的查询,而且一般在项目开发中不使用命令行查询方式,只有在调试测试时使用简单命令行查询,但是,如果想要善用搜索,我们必须使用请求体查询(request ...

  9. Atitit  DbServiceV4qb9 数据库查询类库v4 新特性

    Atitit  DbServiceV4qb9 数据库查询类库v4 新特性     V4新特性 安全特性,屏蔽了executeUpdate,使用v2版 Sql异常转换,特别转换了DuplicateEnt ...

随机推荐

  1. html标签内部简单加js 一维数组求最大值 最小值两个值位置和数字金字塔图形

     html标签内部,简单加js <a href=""></a><!DOCTYPE html PUBLIC "-//W3C//DTD XHTM ...

  2. ARM架构授权和IP核授权有什么不一样啊?

    比如,华为分别拿到这2个授权,能做的有什么区别啊? 匿名 | 浏览 2976 次 推荐于2016-06-09 02:43:35   最佳答案   一个公司若想使用ARM的内核来做自己的处理器,比如苹果 ...

  3. DB-概念-同义词:同义词/Synonym

    ylbtech-DB-概念-同义词:同义词/Synonym 同义词的概念 :英文(synonym)是指向其它数据库表的数据库指针.同义词有私有(private)和公共(public)两种类型. 1.返 ...

  4. selenium2-java 浏览器的三种弹窗处理

    alert弹窗 confirm弹窗 prompt弹窗 点击确定         // 选取警告弹窗           Alert alert=driver.switchTo().alert();   ...

  5. tesnsorflow 版本安装错了。 可以这样删除。

    conda env remove --name tensorflow tensorflow 版本安装错了. 可以这样删除. anaconda  安装tensorflow

  6. Egyptian Collegiate Programming Contest 2017 (ACM ECPC 2017) - original tests edition

    题目链接:https://codeforces.com/gym/101856 D. Dream Team 题意:n个点,让你连边成为一棵树,边权为顶点的GCD(u,v).求所有边权和的最大值. 思路: ...

  7. mysql 性能调优 参数随写

    set global innodb_buffer_pool_size = 12*1024*1024*1024;set global bulk_insert_buffer_size = 12582912 ...

  8. Robot Framework +钉钉通知(Dingding[钉钉] Plugin)构建通知

    1.点击钉钉个人头像进入[机器人管理] 2.添加自定义机器人 3.创建机器人,选择通知群 4.完善机器人信息 5.复制机器人token(只需要连接access_token后面token) 6.进入je ...

  9. java环境搭建与安装开发工具全教程

    当前端的后台搭档是做java后台时,这时就需要自己搭建一个java开发环境,和安装eclipse了. 那么,一般这些开发环境在一个开发团队中是统一的.正规完善的公司还会有自己软件库和安装配置文档.这时 ...

  10. java中垃圾收集的方法有哪些?

    java中垃圾收集的方法有哪些? 一.引用计数算法(Reference Counting) 介绍:给对象添加一个引用计数器,每当一个地方引用它时,数据器加1:当引用失效时,计数器减1:计数器为0的即可 ...