传送门

Sol

(怎么老是有人喜欢出新的多项式毒瘤板子,懒得整到一起了)

核心就是把 幂用下降幂来代替。

使用斯特林数展开幂为下降幂:

\[x^n=\sum_{i=0}^n{x\choose i}i!S(n,i)=\sum_{i=0}^nS(n,i)x^{\underline i}
\]

那么要求的多项式:

\[\sum_{i=0}^{n-1}a_ix^i=\sum_{i=0}^{n-1}a_i\sum_{j=0}^jS(i,j)x^{\underline j}
\]

交换求和顺序:

\[\sum_{j=0}^{n-1}x^{\underline j}\sum_{i=j}^{n-1} a_iS(i,j)
\]

那么求出后面那个东西就行了。由于当 \(i<j\)时 \(S(i,j)=0\),所以 \(i\) 可以从 \(0\) 开始枚举。这个就是一个要求一列的斯特林数的模型。

把斯特林数拆开:

\[\sum_{i=0}^{n-1}\frac{a_i}{j!}\sum_{k=0}^j (-1)^{j-k}{j\choose k}k^i
\]

组合数拆开形成卷积:

\[\sum_{k=0}^j\frac{(-1)^{j-k}}{(j-k)!}*\sum_{i=0}^{n-1}\frac{a_ik^i}{k!}
\]

令 \(f_k=\frac{(-1)^k}{k!},g_k=\sum_{i=0}^{n-1}\frac{a_ik^i}{k!}\) ,那么对 \(F(x)\)与\(G(x)\)做卷积即可。

求 \(G(x)\) 需要多项式多点求值。

code:

#include<bits/stdc++.h>
#define Set(a,b) memset(a,b,sizeof(a))
#define Clear(a,_begin_,_end_) for(int i=_begin_;i<_end_;++i) a[i]=0
#define Input_Array(a,_begin_,_end_) for(int i=_begin_;i<_end_;++i) init(a[i])
#define __ NULL
using namespace std;
const int N=1e5+10,MAXN=N<<2,MAXM=5e6;
typedef vector<int> Poly;
template <typename T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}typedef double db;
typedef long long ll;
int Inv[MAXN],rader[MAXN];
const int mod=998244353,phi=998244352,SIZE=sizeof(rader),inv2=499122177;
template<typename T>inline void Inc(T&x,int y){x+=y;if(x>=mod) x-=mod;return;}
template<typename T>inline void Dec(T&x,int y){x-=y;if(x < 0) x+=mod;return;}
template<typename T>inline int fpow(int x,T k){int ret=1;for(;k;k>>=1,x=(ll)x*x%mod) if(k&1) ret=(ll)ret*x%mod;return ret;}
inline int Sum(int x,int y){x+=y;if(x>=mod) return x-mod;return x;}
inline int Dif(int x,int y){x-=y;if(x < 0 ) return x+mod;return x;}
inline int Init(int n){int len=1,up=-1;while(len<=n) len<<=1,++up;for(int i=0;i<len;++i) rader[i]=(rader[i>>1]>>1)|((i&1)<<up);return len;}
inline void Calc_Inversion(){Inv[1]=1;for(int i=2;i<MAXN;++i) Inv[i]=(ll)(mod-mod/i)*Inv[mod%i]%mod;return;}
namespace NTT{
int wn[30],iwn[30];
inline void Calcw(){for(int i=0;i<30;++i) wn[i]=fpow(3,phi/(1<<i)),iwn[i]=fpow(wn[i],mod-2);}
inline void NTT(int*A,int n,int f){
for(int i=0;i<n;++i) if(rader[i]>i) swap(A[i],A[rader[i]]);
for(int i=1,h=1;i<n;++h,i<<=1){
int W=(~f)? wn[h]:iwn[h];
for(int j=0,p=i<<1;j<n;j+=p){
for(int w=1,k=0;k<i;++k,w=(ll)w*W%mod){
int X=A[j|k],Y=(ll)w*A[j|k|i]%mod;
A[j|k]=Sum(X,Y),A[j|k|i]=Dif(X,Y);
}
}
}if(!~f) for(int i=0;i<n;++i) A[i]=(ll)A[i]*Inv[n]%mod;
return;
}
inline void Mul(int*a,int*b,int*c,int n,int m) {
int L=n+m-1;int len=Init(L);static int A[MAXN],B[MAXN];
for(int i=0;i<n;++i) A[i]=a[i];for(int i=0;i<m;++i) B[i]=b[i];
Clear(A,n,len);Clear(B,m,len);NTT(A,len,1),NTT(B,len,1);
for(int i=0;i<len;++i) c[i]=(ll)A[i]*B[i]%mod;
NTT(c,len,-1);return;
}
inline void Poly_Inv(int*F,int*I,int n){
if(n==1) {memset(I,0,SIZE);I[0]=fpow(F[0],mod-2);return;}
Poly_Inv(F,I,(n+1)>>1);int L=n<<1,len=Init(L);
static int A[MAXN];for(int i=0;i<n;++i) A[i]=F[i];Clear(A,n,len);
NTT(I,len,1);NTT(A,len,1);
for(int i=0;i<len;++i) I[i]=Dif(Sum(I[i],I[i]),(ll)I[i]*I[i]%mod*A[i]%mod);
NTT(I,len,-1);Clear(I,n,len);return;
}
inline void Poly_Mod(int*A,int*B,int*Q,int*R,int n,int m){
if(n<m) {for(int i=0;i<=n;++i) R[i]=A[i];return;}
static int C[MAXN],D[MAXN],E[MAXN];
const int r=(n-m)<<1;int len=1;while(len<=r)len<<=1;
for(int i=0;i<=n-m;++i) D[i]=A[n-i];Clear(D,n-m+1,len);
for(int i=0;i<=m;++i) E[i]=B[m-i];Clear(E,m+1,len);
Poly_Inv(E,C,n-m+1);len=Init(r);NTT(C,len,1),NTT(D,len,1);
for(int i=0;i<len;++i) C[i]=(ll)C[i]*D[i]%mod;
NTT(C,len,-1);reverse(E,E+1+m),reverse(C,C+1+n-m);
if(Q) for(int i=0;i<=n-m;++i) Q[i]=C[i];
len=Init(n);Clear(C,n-m+1,len);Clear(E,m+1,len);
NTT(C,len,1),NTT(E,len,1);
for(int i=0;i<len;++i) C[i]=(ll)C[i]*E[i]%mod;
NTT(C,len,-1);for(int i=0;i<m;++i) R[i]=Dif(A[i],C[i]);
return;
}
#define ls (u<<1)
#define rs (u<<1|1)
int POOL[MAXM],cnt=0;
int *P[MAXN],*F[MAXN],*G[MAXN],X[N],*val;
inline int* Neospace(int len){int*ret=&POOL[cnt];cnt+=len;return ret;}
inline int Calc(int*F,int n,const int x){int X=1,ret=0;for(int i=0;i<n;++i) Inc(ret,(ll)F[i]*X%mod),X=(ll)X*x%mod;return ret;}
inline void Divide(int u,int l,int r){P[u]=NULL;//分治+NTT , 保留了中间的结果
if(l==r) {P[u]=Neospace(2);P[u][0]=mod-X[l];P[u][1]=1;return;}
static int L[MAXN],R[MAXN];int mid=(l+r)>>1;int LS=ls,RS=rs;
Divide(LS,l,mid);Divide(RS,mid+1,r);
int n=r-l+2,nl=mid-l+2,nr=r-mid+1;
for(int i=0;i<nl;++i) L[i]=P[LS][i];
for(int i=0;i<nr;++i) R[i]=P[RS][i];
Mul(L,R,L,nl,nr);P[u]=Neospace(n);
for(int i=0;i<n;++i) P[u][i]=L[i];
return;
}
inline void Poly_Evaluate(int u,int l,int r){// 多点求值
if(r-l+1<=500) {for(int i=l;i<=r;++i) val[i]=Calc(F[u],r-l+1,X[i]);return;}// 长度小的暴力计算
int mid=(l+r)>>1,LS=ls,RS=rs;
int n=r-l+1,nl=mid-l+1,nr=r-mid;
static int R[MAXN];
F[LS]=Neospace(nl),F[RS]=Neospace(nr);
Poly_Mod(F[u],P[LS],__,R,n-1,nl);
for(int i=0;i<nl;++i) F[LS][i]=R[i];
Poly_Mod(F[u],P[RS],__,R,n-1,nr);
for(int i=0;i<nr;++i) F[RS][i]=R[i];
Poly_Evaluate(LS,l,mid);
Poly_Evaluate(RS,mid+1,r);
return;
}
inline void Solve_Evaluation(int*A,int*_X,int*ans,int n,int m){
cnt=0;F[1]=Neospace(m);val=ans;
for(int i=1;i<=m;++i) X[i]=_X[i];Divide(1,1,m);
Poly_Mod(A,P[1],__,F[1],n-1,m);//注意最开始的多项式也要取一次模
Poly_Evaluate(1,1,m);return;
}
}
int fac[N],finv[N];
int main()
{
Calc_Inversion();NTT::Calcw();
int n;fac[0]=finv[0]=1;init(n);
for(int i=1;i<n;++i) fac[i]=(ll)fac[i-1]*i%mod,finv[i]=(ll)finv[i-1]*Inv[i]%mod;
static int F[MAXN],A[MAXN],X[MAXN];
for(int i=0;i<n;++i) init(A[i]),X[i+1]=i,F[i]=(i&1)? (mod-finv[i]):finv[i];
NTT::Solve_Evaluation(A,X,X,n,n);
for(int i=0;i<n;++i) X[i]=(ll)X[i+1]*finv[i]%mod;X[n]=0;
NTT::Mul(X,F,F,n,n);
for(int i=0;i<n;++i) printf("%d ",F[i]);putchar('\n');
return 0;
}

【LuoguP5383】[模板]普通多项式转下降幂多项式的更多相关文章

  1. UOJ269 清华集训2016 如何优雅地求和 下降幂多项式、NTT

    代码 神仙题? 看到连续的点值,那么一定是要利用到连续点值的性质,可以考虑下降幂多项式,即考虑多项式\(F(x) = \sum\limits_{i=0}^m a_ix^{\underline i}\) ...

  2. 洛谷 P6667 - [清华集训2016] 如何优雅地求和(下降幂多项式,多项式)

    题面传送门 wjz:<如何优雅地 AK NOI> 我:如何优雅地爆零 首先,按照这题总结出来的一个小套路,看到多项式与组合数结合的题,可以考虑将普通多项式转为下降幂多项式,因为下降幂和组合 ...

  3. FFT模板 生成函数 原根 多项式求逆 多项式开根

    FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...

  4. CF438E The Child and Binary Tree(生成函数+多项式开根+多项式求逆)

    传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多 ...

  5. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  6. 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆

    题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...

  7. 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)

    传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...

  8. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

  9. [Codeforces438E][bzoj3625] 小朋友和二叉树 [多项式求逆+多项式开根]

    题面 传送门 思路 首先,我们把这个输入的点的生成函数搞出来: $C=\sum_{i=0}^{lim}s_ix^i$ 其中$lim$为集合里面出现过的最大的数,$s_i$表示大小为$i$的数是否出现过 ...

随机推荐

  1. 论文阅读 | Combating Adversarial Misspellings with Robust Word Recognition

    对抗防御可以从语义消歧这个角度来做,不同的模型,后备模型什么的,我觉得是有道理的,和解决未登录词的方式是类似的,毕竟文本方面的对抗常常是修改为UNK来发生错误的.怎么使用backgroud model ...

  2. C# async await的使用

    async 声明一个包含异步代码的函数,该函数执行时不会阻塞调用线程. async标记的函数返回值必须为 void ,Task,Task<TResult> await 必须修饰Task 或 ...

  3. mybatis学习 (五) POJO的映射文件

    Mapper.xml映射文件中定义了操作数据库的sql,每个sql是一个statement,映射文件是mybatis的核心. 1.parameterType(输入类型) 通过parameterType ...

  4. linux批量删除

    find . -name "*.bcp" | xargs rm -rf "*.bcp"

  5. java-selenium定位元素和操作元素

    八种定位方式 一.By.id(id):通过ID 属性查找 HTML 源码 <a onclick="return false;" id="lb" name= ...

  6. Maven添加镜像仓库、更改本地仓库位置

    添加镜像仓库 在conf目录下的settings.xml文件的145行左右 id表示该镜像的id mirrorOf表示为哪个仓库配置镜像,central为默认的中央仓库的id,也可以使用通配符*,来匹 ...

  7. 比反射更快!使用ASM获取class信息(ClassReader)

    比反射更快!使用ASM获取class信息(ClassReader) 通常我们想要在java运行时获取class的信息时,通常使用反射的方式来获取其中的属性,方法,注解等信息.通常是这样的: Class ...

  8. Java 错误:Constructor call must be the first statement in a constructor

    今天用学校里的黑马程序员通Java语法 想到了:在有参构造函数中调用无参构造函数 语法是这样的: class Person{ private int age; public Person() { Sy ...

  9. Luogu P5354 [Ynoi2017]由乃的OJ

    题目 这题以前叫睡觉困难综合征. 首先我们需要知道起床困难综合征怎么做. 大概就是先用一个全\(0\)和全\(1\)的变量跑一遍处理出每一位\(1\)和\(0\)最后会变成什么. 然后高位贪心:如果当 ...

  10. Two strings CodeForces - 762C (字符串,双指针)

    大意: 给定字符串$a$,$b$, $b$可以任选一段连续的区间删除, 要求最后$b$是$a$的子序列, 求最少删除区间长度. 删除一段连续区间, 那么剩余的一定是一段前缀和后缀. 判断是否是子序列可 ...