【bzoj3676】[Apio2014]回文串
*题目描述:
考虑一个只包含小写拉丁字母的字符串s。我们定义s的一个子串t的“出现值”为t在s中的出现次数乘以t的长度。请你求出s的所有回文子串中的最大出现值。
*输入:
输入只有一行,为一个只包含小写字母(a -z)的非空字符串s。
*输出:
输出一个整数,为逝查回文子串的最大出现值。
*样例输入:
【样例输入l】
abacaba
【样例输入2】
www
*样例输出:
【样例输出l】
7
【样例输出2】
4
*提示:
一个串是回文的,当且仅当它从左到右读和从右到左读完全一样。
在第一个样例中,回文子串有7个:a,b,c,aba,aca,bacab,abacaba,其中:
● a出现4次,其出现值为4:1:1=4
● b出现2次,其出现值为2:1:1=2
● c出现1次,其出现值为l:1:l=l
● aba出现2次,其出现值为2:1:3=6
● aca出现1次,其出现值为1=1:3=3
●bacab出现1次,其出现值为1:1:5=5
● abacaba出现1次,其出现值为1:1:7=7
故最大回文子串出现值为7。
【数据规模与评分】
数据满足1≤字符串长度≤300000。
*题解:
回文自动机。把回文自动机构出来然后cmax一下每个节点的len*cnt就好了。
推荐一篇好的回文自动机的blog。
*代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#ifdef WIN32
#define LL "%I64d"
#else
#define LL "%lld"
#endif
#ifdef CT
#define debug(...) printf(__VA_ARGS__)
#define setfile()
#else
#define debug(...)
#define filename ""
#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
#endif
#define R register
#define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
#define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
#define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
char B[1 << 15], *S = B, *T = B;
inline int FastIn()
{
R char ch; R int cnt = 0; R bool minus = 0;
while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
ch == '-' ? minus = 1 : cnt = ch - '0';
while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
return minus ? -cnt : cnt;
}
#define maxn 300010
char str[maxn];
int next[maxn][26], fail[maxn], len[maxn], cnt[maxn], last, tot, n;
inline int new_node(R int l)
{
len[++tot] = l;
return tot;
}
inline void init()
{
tot = -1;
new_node(0);
new_node(-1);
str[0] = -1;
fail[0] = 1;
}
inline int get_fail(R int x)
{
while (str[n - len[x] - 1] != str[n]) x = fail[x];
return x;
}
inline void extend(R int c)
{
++n;
R int cur = get_fail(last);
if (!next[cur][c])
{
R int now = new_node(len[cur] + 2);
fail[now] = next[get_fail(fail[cur])][c];
next[cur][c] = now;
}
last = next[cur][c];
++cnt[last];
}
long long ans;
inline void count()
{
for (R int i = tot; i; --i)
{
cnt[fail[i]] += cnt[i];
cmax(ans, 1ll * len[i] * cnt[i]);
}
}
int main()
{
// setfile();
scanf("%s", str + 1);
init();
for (R int i = 1; str[i]; ++i)
extend(str[i] - 'a');
count();
printf("%lld\n", ans );
return 0;
}
【bzoj3676】[Apio2014]回文串的更多相关文章
- [模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串
回文树/回文自动机 放链接: 回文树或者回文自动机,及相关例题 - F.W.Nietzsche - 博客园 状态数的线性证明 并没有看懂上面的证明,所以自己脑补了一个... 引理: 每一个回文串都是字 ...
- bzoj3676 [Apio2014]回文串 卡常+SAM+树上倍增
bzoj3676 [Apio2014]回文串 SAM+树上倍增 链接 bzoj luogu 思路 根据manacher可以知道,每次暴力扩展才有可能出现新的回文串. 所以推出本质不同的回文串个数是O( ...
- [BZOJ3676][APIO2014]回文串(Manacher+SAM)
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 3097 Solved: 1408[Submit][Statu ...
- [Bzoj3676][Apio2014]回文串(后缀自动机)(parent树)(倍增)
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 3396 Solved: 1568[Submit][Statu ...
- BZOJ3676 APIO2014回文串(manacher+后缀自动机)
由于本质不同的回文子串数量是O(n)的,考虑在对于每个回文子串在第一次找到它时对其暴力统计.可以发现manacher时若右端点移动则找到了一个新回文串.注意这样会漏掉串长为1的情况,特判一下. 现在问 ...
- BZOJ3676[Apio2014]回文串——回文自动机
题目描述 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. 输入 输入只有一行,为一个只包含小写字 ...
- BZOJ3676 APIO2014 回文串 Manacher、SA
传送门 首先一个结论:串\(S\)中本质不同的回文串个数最多有\(|S|\)个 证明考虑以点\(i\)结尾的所有回文串,假设为\(S[l_1,i],S[l_2,i],...,S[l_k,i]\),其中 ...
- bzoj3676: [Apio2014]回文串 pam
题意:字符串s.我们定义s的一个子串t的"出 现值"为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. 题解:pam板子题 //cnt数组表示该节点代表的 ...
- 2018.12.15 bzoj3676: [Apio2014]回文串(后缀自动机)
传送门 对原串建立一个后缀自动机,然后用反串在上面匹配. 如果当前匹配的区间[l,r][l,r][l,r]包裹了当前状态的endposendposendpos中的最大值,那么[l,maxpos][l, ...
- 【回文自动机】bzoj3676 [Apio2014]回文串
回文自动机讲解!http://blog.csdn.net/u013368721/article/details/42100363 pam上每个点代表本质不同的回文子串.len(i)代表长度,cnt(i ...
随机推荐
- Centos7安装protobuf3.6.1
简介 最近学习go语言,需要安装protobuf,但是网上的教程很多都不太适用于centos7 的系统.现在总结下protobuf在centos7下的安装教程. protobuf是Google开发出来 ...
- python 并发编程 多进程 Process对象的其他属性方法 join 方法
一 Process对象的join方法 在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况 情况一: 在主进程的任务与子进程的任务彼此独立的情况下 ...
- C/C++ 内存模型
C分为四个区:堆,栈,静态全局变量区,常量区 C++内存分为5个区域(堆栈全常代 ): 堆 heap : 由new分配的内存块,其释放编译器不去管,由我们程序自己控制(一个new对应一个delete) ...
- C++中的赋值操作符重载和拷贝构造函数
1,关于赋值的疑问: 1,什么时候需要重载赋值操作符? 2,编译器是否提供默认的赋值操作符? 2,关于赋值的疑问: 1,编译器为每个类默认重载了赋值操作符: 1,意味着同类型的类对象可以相互赋值: 2 ...
- centos7使用kubeadm搭建kubernetes集群
一.本地实验环境准备 服务器虚拟机准备 IP CPU 内存 hostname 192.168.222.129 >=2c >=2G master 192.168.222.130 >=2 ...
- Python和Js打印心形
看到一行Python写的代码,会用LovePython输出心形: print('\n'.join([''.join([('LovePython'[(x-y)%10]if((x*0.05)**2+(y* ...
- 高性能迷你React框架anujs1.1.3发布
anujs现在只差一个组件(mention)就完全支持阿里的antd UI库了.一共跑通346个测试, 应该是全世界最接近官方React的迷你框架了. 以后的工作就是把React16的一些新特性支持了 ...
- SCUT - 485 - 质因数计数 - 原根
https://scut.online/p/485 给定a和n,求有多少个质数p,满足n是使得a^n=1 mod p成立的最小正整数. 翻译:求有多少个质数p,使得a模p的阶delta_m(a)是n ...
- RabbitMQ交换器Exchange介绍与实践
RabbitMQ交换器Exchange介绍与实践 RabbitMQ系列文章 RabbitMQ在Ubuntu上的环境搭建 深入了解RabbitMQ工作原理及简单使用 RabbitMQ交换器Exchang ...
- 吴恩达机器学习7:代价函数(Cost function)
一.简介 1.在线性回归中,我们有一个这样的训练集,M代表训练样本的数量,假设函数即用来进行预测的函数是这样的线性函数的形式,我们接下来看看怎么选择这两个参数: 2.如下图中,怎么选择两个参数来更好的 ...