CF1051F The Shortest Statement Dijkstra + 性质分析
动态询问连通图任意两点间最短路,单次询问.
显然,肯定有一些巧妙地性质(不然你就发明了新的最短路算法了233)
有一点很奇怪:边数最多只比点数多 $20$ 个,那么就可以将这个图看作是一个生成树,上面连了不到 $20$ 条边.
考虑两个点之间地最短路只有两种情况:经过所有只在生成树上的点,或者经过一些连着生成树外的点.
第一个情况非常好求,随便搞一个生成树然后求个距离就行.
对于第二种情况,由于连着生成树外的边的点最多只有 $20$ 个,所以可以对这些点都跑一遍最短路,然后依次枚举即可.
每次询问的复杂度为 $O(log$ $n+20 )$
#include<bits/stdc++.h>
using namespace std;
void setIO(string s) {
string in=s+".in";
freopen(in.c_str(),"r",stdin);
}
typedef long long ll;
const int maxn=100005;
const ll inf=10000000000000;
struct Union {
int p[maxn];
void init() {
for(int i=0;i<maxn;++i) p[i]=i;
}
int find(int x) {
return p[x]==x?x:p[x]=find(p[x]);
}
int merge(int x,int y) {
int a=find(x),b=find(y);
if(a==b) return 0;
p[a]=b;
return 1;
}
}ufs;
struct Edge {
int u,v,c;
}ed[maxn];
namespace tree {
int edges;
int val[maxn<<1],hd[maxn],to[maxn<<1],nex[maxn<<1];
int dep[maxn],fa[maxn],top[maxn],siz[maxn],son[maxn];
ll dis[maxn];
void addedge(int u,int v,int c) {
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v,val[edges]=c;
}
void dfs1(int u,int ff) {
fa[u]=ff,dep[u]=dep[ff]+1,siz[u]=1;
for(int i=hd[u];i;i=nex[i]) {
int v=to[i];
if(v==ff) continue;
dis[v]=dis[u]+1ll*val[i];
dfs1(v,u), siz[u]+=siz[v];
if(siz[v]>siz[son[u]]) son[u]=v;
}
}
void dfs2(int u,int tp) {
top[u]=tp;
if(son[u]) dfs2(son[u],tp);
for(int i=hd[u];i;i=nex[i]) {
int v=to[i];
if(v==fa[u]||v==son[u]) continue;
dfs2(v,v);
}
}
int LCA(int x,int y) {
while(top[x]^top[y]) {
dep[top[x]] > dep[top[y]] ? x = fa[top[x]] : y = fa[top[y]];
}
return dep[x] < dep[y] ? x : y;
}
ll Dis(int x,int y) {
return dis[x]+dis[y]-(dis[LCA(x,y)]*2);
}
};
namespace Dijkstra {
struct Node {
ll dis; int u;
Node(ll dis=0,int u=0):dis(dis),u(u){}
bool operator<(Node b) const {
return dis>b.dis;
}
};
priority_queue<Node>Q;
int edges;
int done[maxn], hd[maxn],to[maxn<<1],nex[maxn<<1],val[maxn<<1];
ll d[maxn];
ll dis[50][maxn];
void addedge(int u,int v,int c) {
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v,val[edges]=c;
}
void dijkstra(int s,int idd) {
for(int i=0;i<maxn;++i) d[i]=inf,done[i]=0;
d[s]=0, dis[idd][s]=0, Q.push(Node(0,s));
while(!Q.empty()) {
Node e=Q.top(); Q.pop();
int u=e.u;
if(done[u]) continue;
done[u]=1, dis[idd][u]=d[u];
for(int i=hd[u];i;i=nex[i]) {
int v=to[i];
if(d[u]+val[i]<d[v]) {
d[v]=d[u]+1ll*val[i];
Q.push(Node(d[v], v));
}
}
}
}
};
int n,m;
int mk[maxn],ne[maxn];
int main() {
// setIO("input");
scanf("%d%d",&n,&m);
ufs.init();
for(int i=1;i<=m;++i) {
scanf("%d%d%d",&ed[i].u,&ed[i].v,&ed[i].c);
if(ufs.merge(ed[i].u, ed[i].v)) {
tree::addedge(ed[i].u, ed[i].v, ed[i].c);
tree::addedge(ed[i].v, ed[i].u, ed[i].c);
mk[i]=1;
}
}
int cnt=0;
tree::dfs1(1,0);
tree::dfs2(1,1);
for(int i=1;i<=m;++i) if(mk[i]==0) ne[ed[i].u]=ne[ed[i].v]=1;
for(int i=1;i<=m;++i) Dijkstra::addedge(ed[i].u, ed[i].v, ed[i].c), Dijkstra::addedge(ed[i].v,ed[i].u,ed[i].c);
for(int i=1;i<=n;++i) if(ne[i]) ++cnt, Dijkstra::dijkstra(i,cnt);
int Q;
scanf("%d",&Q);
for(int cas=1;cas<=Q;++cas) {
int u,v;
scanf("%d%d",&u,&v);
ll ans=tree::Dis(u,v);
for(int i=1;i<=cnt;++i) ans=min(ans,Dijkstra::dis[i][u]+Dijkstra::dis[i][v]);
printf("%I64d\n",ans);
}
return 0;
}
CF1051F The Shortest Statement Dijkstra + 性质分析的更多相关文章
- 【题解】Luogu CF1051F The Shortest Statement
原题传送门:CF1051F The Shortest Statement 题目大意,给你一个稀疏图,q次查询,查询两点之间距离 边数减点小于等于20 这不是弱智题吗,23forever dalao又开 ...
- CF1051F The Shortest Statement 题解
题目 You are given a weighed undirected connected graph, consisting of n vertices and m edges. You sho ...
- [CF1051F]The Shortest Statement
题目大意:给定一张$n$个点$m$条有权边的无向联通图,$q$次询问两点间的最短路 $n\le100000$,$m\le100000$,$1\le100000$,$m$-$n\le20$. 首先看到$ ...
- [CF1051F]The Shortest Statement (LCA+最短路)(给定一张n个点m条有权边的无向联通图,q次询问两点间的最短路)
题目:给定一张n个点m条有权边的无向联通图,q次询问两点间的最短路 n≤100000,m≤100000,m-n≤20. 首先看到m-n≤20这条限制,我们可以想到是围绕这个20来做这道题. 即如果我们 ...
- cf1051F. The Shortest Statement(最短路/dfs树)
You are given a weighed undirected connected graph, consisting of nn vertices and mm edges. You shou ...
- cf1051F. The Shortest Statement(最短路)
题意 题目链接 题意:给出一张无向图,每次询问两点之间的最短路,满足$m - n <= 20$ $n, m, q \leqslant 10^5$ Sol 非常好的一道题. 首先建出一个dfs树. ...
- CF 1051 F. The Shortest Statement
F. The Shortest Statement http://codeforces.com/contest/1051/problem/F 题意: n个点,m条边的无向图,每次询问两点之间的最短路. ...
- CF_Edu.#51_Div.2_1051F_The Shortest Statement
F. The Shortest Statement time limit per test:4 seconds memory limit per test:256 megabytes input:st ...
- codeforces 1051F The Shortest Statement
题目链接:codeforces 1051F The Shortest Statement 题意:\(q\)组询问,求任意两点之间的最短路,图满足\(m-n\leq 20\) 分析:一开始看这道题:fl ...
随机推荐
- appium输入和清除操作各方法对比(android)
最近在写android app自动化测试时,发现输入和清除操作耗费时间比较长,下面我用了不同的方法进行输入和清除操作,对比下时间(选取测试的一组数据做分析),选出最佳方法. 1.输入操作 1.1.we ...
- Go语言入门篇-jwt(json web token)权限验证
一.token.cookie.session的区别 1.cookie Cookie总是保存在客户端中,按在客户端中的存储位置,可分为内存Cookie和硬盘Cookie. 内存Cookie由浏览器维护, ...
- Linux 自学shell
1.多个命令用";"分号分割 还可以使用alias 给命令取别名 alias foo='cd /usr ; ls; cd -'2.使用管道线"|" 一个命令的标 ...
- centOs 常用操作
centos 官网下载:https://www.centos.org/download/从官网下载iso,教程:https://jingyan.baidu.com/article/1876c85279 ...
- Linux操作系统优化
figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-wid ...
- VUE项目中使用this.$forceUpdate();解决页面v-for中修改item属性值后页面v-if不改变的问题
VUE项目中使用this.$forceUpdate();解决页面v-for中修改item属性值后页面v-if不改变的问题:https://blog.csdn.net/jerrica/article/d ...
- C++代码审查
C++代码审查 1. 目的与要求 寻找结对编程伙伴,并练习结对编程: 对同伴的作品进行代码复审,设计审查表并填写: 评价同伴的代码,介绍同伴的优缺点. 2. 复审代码 小伙伴李宏达的项目代码与博客地址 ...
- 洛谷 P5662 纪念品 & [NOIP2019普及组] (dp,完全背包)
传送门 解题思路 本题首先要明白,在每一天时,最优策略是先进行操作2(卖),再进行操作1(买),才能是利益最大化. 本题很显然当只有两天时,是一个完全背包,就是把当日价钱当做体积,把明日价格和今日价格 ...
- 五、JVM — 类加载器
回顾一下类加载过程 类加载器总结 双亲委派模型 双亲委派模型介绍 双亲委派模型实现源码分析 双亲委派模型的好处 如果我们不想要双亲委派模型怎么办? 自定义类加载器 推荐 回顾一下类加载过程 类加载过程 ...
- 【源码解读】pix2pix(一):训练
源码地址:https://github.com/mrzhu-cool/pix2pix-pytorch 相比于朱俊彦的版本,这一版更加简单易读 训练的代码在train.py,开头依然是很多代码的共同三板 ...