控制相关度

处理结构化数据(比如:时间、数字、字符串、枚举)的数据库, 只需检查文档(或关系数据库里的行)是否与查询匹配。

布尔的是/非匹配是全文搜索的基础,但不止如此,我们还要知道每个文档与查询的相关度,在全文搜索引擎中不仅需要找到匹配的文档,还需根据它们相关度的高低进行排序。

全文相关的公式或 相似算法(similarity algorithms) 会将多个因素合并起来,为每个文档生成一个相关度评分 _score 。本章中,我们会验证各种可变部分,然后讨论如何来控制它们。

当然,相关度不只与全文查询有关,也需要将结构化的数据考虑其中。可能我们正在找一个度假屋,需要一些的详细特征(空调、海景、免费 WiFi ),匹配的特征越多相关度越高。可能我们还希望有一些其他的考虑因素,如回头率、价格、受欢迎度或距离,当然也同时考虑全文查询的相关度。

所有的这些都可以通过 Elasticsearch 强大的评分基础来实现。

本章会先从理论上介绍 Lucene 是如何计算相关度的,然后通过实际例子说明如何控制相关度的计算过程。

相关度评分背后的理论

Lucene(或 Elasticsearch)使用 布尔模型(Boolean model) 查找匹配文档, 并用一个名为 实用评分函数(practical scoring function) 的公式来计算相关度。这个公式借鉴了 词频/逆向文档频率(term frequency/inverse document frequency) 和 向量空间模型(vector space model),同时也加入了一些现代的新特性,如协调因子(coordination factor),字段长度归一化(field length normalization),以及词或查询语句权重提升。

不要紧张!这些概念并没有像它们字面看起来那么复杂,尽管本小节提到了算法、公式和数学模型,但内容还是让人容易理解的,与理解算法本身相比,了解这些因素如何影响结果更为重要。

布尔模型

布尔模型(Boolean Model) 只是在查询中使用 AND 、 OR 和 NOT (与、或和非)这样的条件来查找匹配的文档,以下查询:

full AND text AND search AND (elasticsearch OR lucene)

会将所有包括词 full 、 text 和 search ,以及 elasticsearch 或 lucene 的文档作为结果集。

这个过程简单且快速,它将所有可能不匹配的文档排除在外。

词频/逆向文档频率(TF/IDF)

当匹配到一组文档后,需要根据相关度排序这些文档,不是所有的文档都包含所有词,有些词比其他的词更重要。一个文档的相关度评分部分取决于每个查询词在文档中的 权重 。

词的权重由三个因素决定,在 什么是相关 中已经有所介绍,有兴趣可以了解下面的公式,但并不要求记住。

tf(t in d) = √frequency

词 t 在文档 d 的词频( tf )是该词在文档中出现次数的平方根。

如果不在意词在某个字段中出现的频次,而只在意是否出现过,则可以在字段映射中禁用词频统计:

PUT /my_index
{
"mappings": {
"doc": {
"properties": {
"text": {
"type": "text",
"index_options": "docs"
}
}
}
}
}

将参数 index_options 设置为 docs 可以禁用词频统计及词频位置,这个映射的字段不会计算词的出现次数,对于短语或近似查询也不可用。要求精确查询的 not_analyzed 字符串字段会默认使用该设置。

逆向文档频率

词在集合所有文档里出现的频率是多少?频次越高,权重 越低 。 常用词如 and 或 the 对相关度贡献很少,因为它们在多数文档中都会出现,一些不常见词如 elastic 或 hippopotamus 可以帮助我们快速缩小范围找到感兴趣的文档。逆向文档频率的计算公式如下:

idf(t) = 1 + log ( numDocs / (docFreq + 1))

词 t 的逆向文档频率( idf )是:索引中文档数量除以所有包含该词的文档数,然后求其对数。

字段长度归一值

字段的长度是多少? 字段越短,字段的权重 越高 。如果词出现在类似标题 title 这样的字段,要比它出现在内容 body 这样的字段中的相关度更高。字段长度的归一值公式如下:

norm(d) = 1 / √numTerms

字段长度归一值( norm )是字段中词数平方根的倒数。

字段长度的归一值对全文搜索非常重要, 许多其他字段不需要有归一值。无论文档是否包括这个字段,索引中每个文档的每个 string 字段都大约占用 1 个 byte 的空间。对于 not_analyzed 字符串字段的归一值默认是禁用的,而对于 analyzed 字段也可以通过修改字段映射禁用归一值:

PUT /my_index
{
"mappings": {
"doc": {
"properties": {
"text": {
"type": "string",
"norms": { "enabled": false }
}
}
}
}
}

"norms": { "enabled": false } 这个字段不会将字段长度归一值考虑在内,长字段和短字段会以相同长度计算评分。

elasticsearch 深入 —— 相关度控制的更多相关文章

  1. Elasticsearch BM25相关度算法超详细解释

    Photo by Pixabay from Pexels 前言:日常在使用Elasticsearch的搜索业务中多少会出现几次 "为什么这个Doc分数要比那个要稍微低一点?".&q ...

  2. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  3. boot接入elasticsearch

    boot接入elasticsearch 参考博客:https://blog.csdn.net/li521wang/article/details/83792552 项目源码demo:https://g ...

  4. elasticsearch 第三篇(安装篇)

    *nux下安装 在*nux下,es官方已提供编译的deb和rpm包,但是需要保证已安装安装Java虚拟环境(目前es1.6和1.7版本均可选择1.8版本java),安装步骤如下:1.下载ES deb/ ...

  5. Elasticsearch集群 管理

    第7章 深入Elasticsearch集群 启动一个Elasticsearch节点时,该节点会开始寻找具有相同集群名字并且可见的主节点.如 果找到主节点,该节点加入一个已经组成了的集群:如果没有找到, ...

  6. Kibana4学习<二>

    生产环境部署 Kibana4 是是一个完整的 web 应用.使用时,你需要做的只是打开浏览器,然后输入你运行 Kibana 的机器地址然后加上端口号.比如说:localhost:5601 或者 htt ...

  7. ELK日志相关

    转: Logstash 讲解与实战应用 原创qw871122016-08-20 16:06:07评论(1)40217人阅读 一.Logstash 介绍 Logstash 是一款强大的数据处理工具,它可 ...

  8. elastic(10) 基本查询

    # 指定index名以及type名的搜索 GET /library/books/_search?q=title:elasticsearch # 指定index名没有type名的搜索 GET /libr ...

  9. [Elasticsearch] 控制相关性 (一) - 后面的相关度分值理论计算

    从第一章翻译Elasticsearch官方指南Controlling Relevance一章. 控制相关度(Controlling Relevance) 对于仅处理结构化数据(比方日期.数值和字符枚举 ...

随机推荐

  1. 理解Promise (1)

    new Promise 需要传递一个执行器 (函数) 函数有两个参数 resolve reject promise 承诺 默认的状态是pengding 调用 resolve 表示成功 reject 表 ...

  2. CF527E Data Center Drama

    链接CF527E Data Center Drama 题目大意:给你一个无向图,要求加最少的边,然后给这些无向图的边定向,使得每一个点的出入度都是偶数. \(n<=10^5,n\leq 2*10 ...

  3. windows下如何安装pip

    在安装pip前,请确认win系统中已经安装好了python,和easy_install工具 Python完成后 配置环境变量 在环境变量中添加Python目录 (1) 右键点击"计算机&qu ...

  4. LCT的一些坑【已经变成坑点集合了233】

    好了蠢蠢的我写了第一个LCT模板就炸掉了QAQ 开个blog记一下我能出多少锅. 1.splay写挂了hhh这个你真的是蠢 2.这个奇怪的东西 bool not_root(int x){return ...

  5. Java+Maven的工程运行Sonar的方式

    step 1:在maven->setting.xml中进行配置 修改mvn工程所用的setting.xml文件,在<profiles></profiles>节点中增加: ...

  6. LeetCode--039--组合总和(java)

    给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制重复被选 ...

  7. 【面经分享】前端小白半年准备,成功进入bat

    先介绍下背景 非211,985本科毕业.一年半PHP经验,一年半前端经验,前端一直在做React开发. 半年之前,我是一个前端小小小白.多么小白呢? css调样式全靠试. 盒模型,好像知道是啥?好像又 ...

  8. 台哥原创:java 俄罗斯方块源码

    大四的时候,用java开发,耗时一周 界面参照当时用的联想手机里的俄罗斯方块 ​ 这里的级别,标识难度,1是初级,方块下降速度很慢,5是最高级,下降速度最快 ​ 得分:每消除一行,会给10分,同时消除 ...

  9. php面试专题---20、MySQL的安全性考点

    php面试专题---20.MySQL的安全性考点 一.总结 一句话总结: 还是得多看视频,教程看的浮光掠影,容易get不到重点:比如预处理防sql注入之前是挺熟,后面就忘记了,而且看文章get不到点 ...

  10. 拒绝从入门到放弃_《Python 核心编程 (第二版)》必读目录

    目录 目录 关于这本书 必看知识点 最后 关于这本书 <Python 核心编程 (第二版)>是一本 Python 编程的入门书,分为 Python 核心(其实并不核心,应该叫基础) 和 高 ...