[Codeforces 1205B]Shortest Cycle(最小环)

题面

给出n个正整数\(a_i\),若\(a_i \& a_j \neq 0\),则连边\((i,j)\)(注意i->j的边和j->i的边看作一条。问连边完图的最小环长度

\(n \leq 10^5,0 \leq a_i \leq 10^{18}\)

分析

我们按位考虑.显然满足第i位为1的所有数两两之间都有边,构成一个完全图.

统计第i位为1的数,如果第i位为1的数超过2个,就直接输出3(这3个构成一个最小环)。如果有2个,就连一条边.注意点的编号要离散化,因为前面可能有很多0,导致满足条件的(i,j)编号很大。

因为要建图的时候,每一位最多建一条边,边数<64,点数<128,floyd求最小环\(O(n^3)\)可以卡过

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#define INF 0x3f3f3f3f3f3f3f3f
#define maxv 1000
#define maxn 100000
using namespace std;
typedef long long ll;
int n;
ll a[maxn+5];
vector<int>vis[70];
int cnt=0;
int tp[maxn+5];
ll ans=0;
ll edge[maxv+5][maxv+5];
ll dist[maxv+5][maxv+5];
void floyd(){
for(int k=1;k<=cnt;k++){
for(int i=1;i<k;i++){
for(int j=i+1;j<k;j++){
if(dist[i][j]==INF||edge[i][k]==INF||edge[k][j]==INF) continue;
//防止加法溢出
if(dist[i][j]+edge[i][k]+edge[k][j]<ans){
ans=dist[i][j]+edge[i][k]+edge[k][j];
}
}
}
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++){
if(dist[i][j]>dist[i][k]+dist[k][j]){
dist[i][j]=dist[i][k]+dist[k][j];
}
}
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%I64d",&a[i]);
for(ll i=0;i<64;i++){
for(int j=1;j<=n;j++){
if(a[j]&(1ll<<i)) vis[i].push_back(j);
}
}
for(int i=0;i<64;i++){
if(vis[i].size()>2){
printf("3\n");
return 0;
}
}
for(int i=0;i<64;i++){
if(vis[i].size()==2){
tp[++cnt]=vis[i][0];
tp[++cnt]=vis[i][1];
}
}
sort(tp+1,tp+1+cnt);
cnt=unique(tp+1,tp+1+cnt)-tp-1;
memset(edge,0x3f,sizeof(edge));
memset(dist,0x3f,sizeof(dist));
ans=INF;
for(int i=0;i<64;i++){
if(vis[i].size()==2){
int u=lower_bound(tp+1,tp+1+cnt,vis[i][0])-tp;
int v=lower_bound(tp+1,tp+1+cnt,vis[i][1])-tp;
// printf("%d %d\n",u,v);
edge[u][v]=edge[v][u]=1;
}
}
memcpy(dist,edge,sizeof(edge));
floyd();
if(ans==INF) printf("-1\n");
else printf("%d\n",ans);
}

[Codeforces 1205B]Shortest Cycle(最小环)的更多相关文章

  1. @codeforces - 1205B@ Shortest Cycle

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个长度为 n 的正整数序列 a1, a2, ..., an ...

  2. Codeforces Round #580 (Div. 2)-D. Shortest Cycle(思维建图+dfs找最小环)

    You are given nn integer numbers a1,a2,…,ana1,a2,…,an. Consider graph on nn nodes, in which nodes ii ...

  3. CF 1206D - Shortest Cycle Floyd求最小环

    Shortest Cycle 题意 有n(n <= 100000)个数字,两个数字间取&运算结果大于0的话连一条边.问图中的最小环. 思路 可以发现当非0数的个数很大,比如大于200时, ...

  4. Codeforces 1206 D - Shortest Cycle

    D - Shortest Cycle 思路:n大于某个值肯定有个三元环,否则floyd找最小环. 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) ...

  5. D. Shortest Cycle(floyd最小环)

    D. Shortest Cycle time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  6. D. Shortest Cycle

    D. Shortest Cycle A[i]&A[j]!=0连边, 求图中最小环 N>128 时必有3环 其他暴力跑 folyd最小环 #include<bits/stdc++.h ...

  7. [CF580C]Shortest Cycle(图论,最小环)

    Description: 给 \(n\) 个点的图,点有点权 \(a_i\) ,两点之间有边当且仅当 \(a_i\ \text{and}\ a_j \not= 0\),边权为1,求最小环. Solut ...

  8. B. Shortest Cycle 无向图求最小环

    题意: 给定 n 个点,每个点有一个权值a[i],如果a[u]&a[v] != 0,那么就可以在(u,v)之间连一条边,求最后图的最小环(环由几个点构成) 题解:逻辑运算 & 是二进制 ...

  9. codeforces 962F.simple cycle(tarjan/点双连通分量)

    题目连接:http://codeforces.com/contest/962/problem/F 题目大意是定义一个simple cycle为从一个节点开始绕环走一遍能经过simple cycle内任 ...

随机推荐

  1. varnish流程图

    varnish流程图

  2. 关于mysql(Navicat premium软件中) 外键设置中“删除”和“更新”选项详解

    ON DELETE restrict(约束):当在父表(即外键的来源表)中删除对应记录时,首先检查该记录是否有对应外键,如果有则不允许删除. no action:意思同restrict.即如果存在从数 ...

  3. Task4.用PyTorch实现多层网络

    1.引入模块,读取数据  2.构建计算图(构建网络模型) 3.损失函数与优化器 4.开始训练模型 5.对训练的模型预测结果进行评估 import torch.nn.functional as F im ...

  4. php array_keys()函数 语法

    php array_keys()函数 语法 作用:返回包含数组中所有键名的一个新数组.直线电机选型 语法:array_keys(array,value,strict) 参数: 参数 描述 array ...

  5. React使用的思考总结

    1.事件处理中的this指针问题 在 react 中,用 class 声明一个组件,调用 class 中的方法时,如果该方法中有 this 且没有手动绑定 this 指针,则会发生 this 指向 u ...

  6. 数位dp浅谈(hdu3555)

    数位dp简介: 数位dp常用于求区间内某些特殊(常关于数字各个数位上的值)数字(比如要求数字含62,49): 常用解法: 数位dp常用记忆化搜索或递推来实现: 由于记忆化搜索比较好写再加上博主比较蒟, ...

  7. Android Bluetooth 文件接收路径修改方法

    修改文件: packages/apps/Bluetooth/src/com/android/bluetooth/opp/BluetoothOppReceiveFileInfo.java 相关代码片段: ...

  8. es之java删除文档操作

    删除文档操作 @Test public void deleteDocument(){ DeleteResponse response = client.prepareDelete("twit ...

  9. ORACLE Physical Standby 级联备库搭建

    搭建oracle 级联DG 现有架构:physical standby 一主二备,在此基础上,在主库下新建备库standby3.级联备库cascade 数据库版本 11.2.0.4 db_name=p ...

  10. ThreadPoolExecutor 源码分析

    ThreadPoolExecutor 线程池核心实现类 线程池的生命周期 RUNNING: 接受新任务,同时处理工作队列中的任务 SHUTDOWN: 不接受新任务,但是能处理工作队列中的任务 STOP ...