小白学数据分析----->留存率与运营活动分析_I
有关留存率的事情最近扯得比较多,因为在分析数据的时候,越发觉得,分析一定是要来解决问题的,留存率不知何时突然变得流行了,在此讨论留存率倒不是因为流行,而是觉得以留存率为核心,的确是可以帮助我们解决不少的问题,但前提是,不要只停留在你所知道的次日,3日,7日留存率就OK,因为纵然你知道与benchmarks是差距,如果只抱着这个指标,你依然不知道自己该怎么做。下面会给大家一张图,让小白们看到,真正懂得要如何看待和分析留存率的,恰好,也验证我之前的一个观点。
公测100+周,各周新用户在他们各自生命周期内各周的留存;
孤单的蓝线,是第一周的新用户和不删档内测阶段的用户总和;
当然以上的曲线是按照周留存来计算的。不过比较明显的是,如果你看过长尾理论就会知道这是符合幂律分布的。
回到今天的话题上,今天要说的留存率和运营活动的一些想法。近期卡牌类的游戏,比较流行,从榜单来看覆盖的密度也比较高,今天的例子就以卡牌游戏的运营活动为例来说说。
在整个运营的大体系中,活动运营只是其中的一部分,然而却起到了非常关键的作用,不要把活动当成了运营的全部,这是首先大家要建立的认识。之所以要拿卡牌作为一个例子,主要是在卡牌游戏对于活动的以来程度比较大,其中缘由我简单说一下:
核心玩法[解题模式]相对简单,易疲劳;
内容丰富性和节奏感;
所以很多的时候,我们需要去用活动去进行相应的刺激和鼓励。
在如今已变成红海的卡牌市场,游戏众多,想要突破在玩法变革,题材内容变化等方面,运营实力是一个很重要的因素,这个运营实力不只是说运营人员的营销和经营用户的能力,还有对于细节的调整和挖掘。
在活动这个问题上,我们可能组织了以下的各种活动:
但活动其实本身是一个过程,是一个需求反馈过程,因此在这个过程中,怎么去借助数据挖掘需求,提升留存质量是一个关键。不过要说明的是,留存的提升活动只是一个手段,但是核心还在产品质量,说到这点,其实细节是关键。
仔细看这张图,你会发现多了一个活动弹窗,其实这么做的目的有很多,它不仅仅只是一个弹窗,在背后有这么几条核心价值:
弹窗对于移动用户而言是有认知的,用户不会反感,国内用户很习惯活动这一套,极低的认知成本造就我们可以在启动的时候就做这件事;
弹窗的出现以及内容的引入,至少是70%以上的用户愿意停留5s左右的时间来查看各种充值,福利活动信息,因为这点,这为客户端的加载,程序更新,网络连接等争取了时间,这一点可以给大家举一个例子,同样是与人聊天,同样是一样的时间,与爱人和朋友的内心感受是不同的,一个感觉时间总是短暂,一个总是感觉时间漫长;
目前每一个CP都要对接很多的渠道,很多的渠道也为游戏开设了论坛,游戏的新闻,活动信息都是发布在这些渠道论坛上面,然而面临一个现实问题在于,并不是所有用户都能被我们的相关信息覆盖到,也就是说,用户的分散性,和渠道多样性,造成我们很难将信息很好的传达给每一个玩家,然而这个弹窗信息却解决的了这个问题。
对游戏而言,尤其是移动游戏,如何快速的让用户进入游戏,流畅体验,这是必须要解决的问题,纵然你的核心玩法再好,美术再好,进入不了游戏一切都免谈,在这点上,弹窗其实帮助我们缓解了这个问题。
从我们关心的留存来看,我们的计算中,一定那些成功进入以后的用户才能算作是留存用户,而这些留下来用户的行为其实就变得很重要,关于这点的分析见http://www.cnblogs.com/yuyang-DataAnalysis/archive/2013/05/10/3071764.html
从这点来说,既然是留下来这些人,那么我们就需要了解留下这批人做了什么,在那些方面可以拉升这个留存率,这是一个核心问题,其实这点上除了游戏本身的质量决定之外,你的运营手段使用,譬如活动运营就是一个核心因素,这点在随后的文章中讲解。
小白学数据分析----->留存率与运营活动分析_I的更多相关文章
- 小白学数据分析--留存率分析_I次日留存率突然下降了50%
小白学数据分析--留存率分析_I次日留存率突然下降了50% 最近在做留存分析时,遇到了不少的情况,也经常会有人问我,为什么我的游戏突然次日留存率降了一半.如果留存率是单单作为一个简单的指标的话,那对你 ...
- 小白学数据分析--聚类分析理论之K-means理论篇
小白学数据分析--聚类分析理论之K-means理论篇 聚类分析是一类广泛被应用的分析方法,其算法众多,目前像SAS.Splus.SPSS.SPSS Modeler等分析工具均以支持聚类分析,但是如何使 ...
- 小白学数据分析----->什么才是留存率的关键?
最近花了很多的时间在体验各种游戏,从火爆的卡牌,到策略,RPG等等,有一个问题在影响我,什么才是留存率的关键?今天就先讨论一些我的想法. 留存率已经成为大家最常提到的词汇,也是拿出来show一下的武器 ...
- 小白学数据分析----->DNU/DAU
行业指标观察分析-DNU/DAU 写在分析之前 一直以来,我们对于数据都是在做加法,也希望这个过程中,不断搜罗和变换出来更多的数据指标,维度等等.而在实际的分析中,我们发现,一如我们给用户提供产品一样 ...
- 小白学数据分析----->ARPPU的误区
新年到来,该应该持续坚持写下去,还是有很多人要来学习和进步的. 今天提到了一个概念:ARPPU. 这个概念等同于之前大家认识的ARPU(其实这句话我是很不愿意说的),ARPPU是总收入除以总付费用户数 ...
- 小白学数据分析----->移动游戏的使用时长分析
写下该文章,是因为之前看到了几款游戏一个典型的玩家刺激活动,在<多塔联盟>,<萌江湖>等多款游戏的设计中都有体现,如下图所示: 这个功能点的设计,今天在这里讲的更多的还是跟数据 ...
- 小白学数据分析----->付费用户生命周期研究
付费用户其实存在一个付费周期转化的问题,直接指标可能就是付费渗透率的问题,然而在此背后其实还有更深入的问题.我们经常遇到的是推广渠道获得的新用户,且这批用户进入游戏的状态.其实在付费用户问题研究方面, ...
- 小白学数据分析----->ARPDAU的价值
最近盛大刚刚发布了财报,有人给我打电话问什么是ARPDAU?ARPDAU能够起到什么作用?本文就这个问题给大家解析一下ARPDAU.在讲ARPDAU之前,有两个概念大家应该很清楚,一个是ARPU,另一 ...
- 小白学数据分析----->学习注册转化率
你的注册转化率及格了吗? 注册转化率,一个基本上可以忽略的指标,虽然简单,但是却真实反映渠道,发行商,开发者的实力,以及对待产品的态度. 所谓的注册转化率,其实指的是玩家从下载游戏后,打开激活游戏,注 ...
随机推荐
- 专题:『Channel Bonding/team』——EXPERIMANTAL!!!
Linux内核支持的多网卡聚合方法——bond.team bond 优点:经过长时间的实践检验,具有较高的稳定性:kernel-2.4及以上内核均广泛支持 缺点:需要通过sysfs或发行版定制的网卡配 ...
- 【jQuery】: 定时刷新页面
<%@page import="qflag.ucstar.seatmonitor.manager.SeatMonitorManager"%><%@ page la ...
- mysql 全文搜索的FULLTEXT
FULLTEXT索引 创建FULLTEXT索引语法 创建table的时候创建fullText索引 CREATE TABLE table_name( column1 data_type, column2 ...
- web可用性测试
1.软件质量模型 2.什么是可用性测试 a. 用户体验 Google搜索界面 ipod iphone b.使用感受 清爽 ,美观,简洁 3. 一位局长使用B/S系统 今天我点名买了个B/S ...
- java中的匿名内部类小结
匿名内部类也就是没有名字的内部类.正因为没有名字,所以匿名内部类只能使用一次,它通常用来简化代码编写. 但使用匿名内部类还有个前提条件:必须继承一个父类或实现一个接口. 实例1:不使用匿名内部类来实现 ...
- jQuery最佳实践(转载)
本文转载于阮一峰的博文. 上周,我整理了<jQuery设计思想>. 那篇文章是一篇入门教程,从设计思想的角度,讲解“怎么使用jQuery”.今天的文章则是更进一步,讲解“如何用好jQuer ...
- step by step 之餐饮管理系统二
昨天写了餐饮管理系统的相关需求,得到了园友的一些好的建议,感到很高兴,确实写的也不全面,现在补充一下需要的业务,这次主要做的主要是前台收银系统,所以业务主要集中在前台点菜收银这块,而后面数据管理这块则 ...
- windows7 自带l2tp/ipsec VPN客户端连接Cisco ASA
搞了半天,最后发现其实很简单,在ASA默认配置的基础上,把所有crypto ipsec ikev1 transform-set 加上mode transport,然后把tunnel-group Def ...
- 【Python自动化运维之路Day6】
1.递归思考题,阶乘 使用递归方式(函数)计算: 1*2*3*4*5*6*7*8*9*10的值 def func(num): if num==1: return 1 return num*func(n ...
- Asp.Net Web API 2第三课——.NET客户端调用Web API
详情请查看http://aehyok.com/Blog/Detail/70.html 个人网站地址:aehyok.com QQ 技术群号:206058845,验证码为:aehyok 本文文章链接:ht ...