F - GCD

Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs. 
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 

Input

The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases. 
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above. 
 

Output

For each test case, print the number of choices. Use the format in the example. 
 

Sample Input

2
1 3 1 5 1
1 11014 1 14409 9
 

Sample Output

Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5). 

求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d)。

b和d分别除以k之后的区间里面,只需要求gcd(x, y) = 1就可以了,这样子求出的数的对数不变。

这道题目还要求1-3 和 3-1 这种情况算成一种,因此只需要限制x<y就可以了

只需要枚举x,然后确定另一个区间里面有多少个y就可以了。因此问题转化成为区间(1, d)里面与x互素的数的个数

先求出x的所有质因数,因此(1,d)区间里面是x的质因数倍数的数都不会与x互素,因此,只需要求出这些数的个数,减掉就可以了。

如果w是x的素因子,则(1,d)中是w倍数的数共有d/w个。

容斥原理:

所有不与x互素的数的个数= 1个因子倍数的个数 - 2个因子乘积的倍数的个数 + 3个……-……

答案很大,用long long。

所有数的素因子,预先处理保存一下,不然会超时的。

#include<iostream>
using namespace std;
const int Max=;
__int64 elur[Max];//存放每个数的欧拉函数值
int num[Max];//存放数的素因子个数
int p[Max][];//存放数的素因子
void init()//筛选法得到数的素因子及每个数的欧拉函数值
{
elur[]=;
for(int i=;i<Max;i++)
{
if(!elur[i])
{
for(int j=i;j<Max;j+=i)
{
if(!elur[j])
elur[j]=j;
elur[j]=elur[j]*(i-)/i;
p[j][num[j]++]=i;
}
}
elur[i]+=elur[i-]; //进行累加(法里数列长度)
}
}
int dfs(int idx,int b,int now)//求不大于b的数中,与now不互质的数的个数;
{ //dfs()写的容斥原理
int ans=;
for(int i=idx;i<num[now];i++)//容斥原理来求A1并A2并A3.....并Ak的元素的数的个数.
ans += b/p[now][i]-dfs(i+,b/p[now][i],now);
return ans;
} int main()
{
int t,a,b,c,d,k;
init();
scanf("%d",&t);
for(int ca=;ca<=t;ca++)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",ca);
if(k==)
{
printf("0\n");
continue;
}
if(b>d)
swap(b,d);
b/=k; d/=k;
__int64 ans=elur[b];
for(int i=b+;i<=d;i++)
ans+=b-dfs(,b,i);//求不大于b的数中,与i不互质的数的个数
printf("%I64d\n",ans);
}
return ;
}

HDU1695 GCD (欧拉函数+容斥原理)的更多相关文章

  1. [hdu1695] GCD ——欧拉函数+容斥原理

    题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...

  2. hdu 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  4. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  6. hdu (欧拉函数+容斥原理) GCD

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...

  7. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  9. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  10. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

随机推荐

  1. 安卓系统源码编译系列(六)——单独编译内置浏览器WebView教程

    原文                   http://blog.csdn.net/zhaoxy_thu/article/details/18883015                 本文主要对从 ...

  2. pthread_detach pthread_join pthread_create

    pthread_create:创建线程以后线程直接开始运行: pthread_detach pthread_join:线程资源的释放方式. 创建一个线程默认的状态是joinable, 如果一个线程结束 ...

  3. MyEclipse------遍历某个路径下的(所有或特定)文件和目录

    usebean包(自己定义的,在src文件夹下面)里的java文件 FileAccept.java package usebean; import java.io.File; import java. ...

  4. 升级centos6.5系统的gcc为4.8.5的简易步骤

    Centos6.5_64位升级gcc为4.8.2的简易步骤 一.安装依赖包 yum install texinfo-tex flex zip mpfr-devel libgcc.i686 glibc- ...

  5. java.lang.NoClassDefFoundError: org/hibernate/cfg/Configuration解决方法

    Autowiring of fields failed; nested exception is...........Error creating bean with name 'siteOperat ...

  6. iPod怎么下载歌曲?用iTunes传文件功能!

    昨儿一小美女拿我的手机听歌,说她不知道iPod怎么下载歌曲,因为还在上学家里不肯给买智能机,怕会影响学业.她的iPod shuffle刚买没多久还不会往里传歌曲,让我帮看看怎么整,心想她应该是没装iT ...

  7. unity3d 截屏

    原地址:http://www.cnblogs.com/88999660/archive/2013/01/21/2869747.html void OnGUI(){ if(GUI.Button(new ...

  8. C语言可以包含.txt文件

    // fa.cpp : 定义控制台应用程序的入口点.// #include "stdafx.h"#include "iostream"#include" ...

  9. ZeroMQ(java)中监控Socket

    基本上ZeroMQ(java)中基本的代码都算是过了一遍了吧,不过觉得它在日志这一块貌似基本没有做什么工作,也就是我们通过日志来知道ZeroMQ都发生了什么事情.. 而且由于ZeroMQ中将连接的建立 ...

  10. 使用JDBC获取各数据库的Meta信息——表以及对应的列

    先贴代码,作为草稿: 第一个是工具类, MapUtil.java [java] view plain copy import java.util.ArrayList; import java.util ...