F - GCD

Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs. 
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 

Input

The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases. 
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above. 
 

Output

For each test case, print the number of choices. Use the format in the example. 
 

Sample Input

2
1 3 1 5 1
1 11014 1 14409 9
 

Sample Output

Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5). 

求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d)。

b和d分别除以k之后的区间里面,只需要求gcd(x, y) = 1就可以了,这样子求出的数的对数不变。

这道题目还要求1-3 和 3-1 这种情况算成一种,因此只需要限制x<y就可以了

只需要枚举x,然后确定另一个区间里面有多少个y就可以了。因此问题转化成为区间(1, d)里面与x互素的数的个数

先求出x的所有质因数,因此(1,d)区间里面是x的质因数倍数的数都不会与x互素,因此,只需要求出这些数的个数,减掉就可以了。

如果w是x的素因子,则(1,d)中是w倍数的数共有d/w个。

容斥原理:

所有不与x互素的数的个数= 1个因子倍数的个数 - 2个因子乘积的倍数的个数 + 3个……-……

答案很大,用long long。

所有数的素因子,预先处理保存一下,不然会超时的。

#include<iostream>
using namespace std;
const int Max=;
__int64 elur[Max];//存放每个数的欧拉函数值
int num[Max];//存放数的素因子个数
int p[Max][];//存放数的素因子
void init()//筛选法得到数的素因子及每个数的欧拉函数值
{
elur[]=;
for(int i=;i<Max;i++)
{
if(!elur[i])
{
for(int j=i;j<Max;j+=i)
{
if(!elur[j])
elur[j]=j;
elur[j]=elur[j]*(i-)/i;
p[j][num[j]++]=i;
}
}
elur[i]+=elur[i-]; //进行累加(法里数列长度)
}
}
int dfs(int idx,int b,int now)//求不大于b的数中,与now不互质的数的个数;
{ //dfs()写的容斥原理
int ans=;
for(int i=idx;i<num[now];i++)//容斥原理来求A1并A2并A3.....并Ak的元素的数的个数.
ans += b/p[now][i]-dfs(i+,b/p[now][i],now);
return ans;
} int main()
{
int t,a,b,c,d,k;
init();
scanf("%d",&t);
for(int ca=;ca<=t;ca++)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",ca);
if(k==)
{
printf("0\n");
continue;
}
if(b>d)
swap(b,d);
b/=k; d/=k;
__int64 ans=elur[b];
for(int i=b+;i<=d;i++)
ans+=b-dfs(,b,i);//求不大于b的数中,与i不互质的数的个数
printf("%I64d\n",ans);
}
return ;
}

HDU1695 GCD (欧拉函数+容斥原理)的更多相关文章

  1. [hdu1695] GCD ——欧拉函数+容斥原理

    题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...

  2. hdu 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  4. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  6. hdu (欧拉函数+容斥原理) GCD

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...

  7. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  9. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  10. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

随机推荐

  1. 【BZOJ-2588】Count on a tree 主席树 + 倍增

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 3749  Solved: 873[ ...

  2. BZOJ1452 [JSOI2009]Count

    Description Input Output Sample Input Sample Output 1 2 HINT 正解:二维树状数组 解题报告: 这是一道送肉题.二维树状数组直接维护每种颜色的 ...

  3. [IOS UIalert模版]

    1.alertview创建 UIAlertView *alert; alert = [[UIAlertView alloc] initWithTitle:@"提示" message ...

  4. Linux cscope命令

    一.简介 Cscope 是一款开源免费的 C/C++浏览工具,自带一个基于文本的用户界面,通过cscope可以很方便地找到某个函数或变量的定义位置.被调用的位置等信息.Cscope对 C /C++支持 ...

  5. Fedora下安装ORACLE 11g

    一.硬件检测 1.内存检测  oracle11g要求最低1GB内存 命令: grep MemTotal  /proc/meninfo 2.交换空间检测 通常交换空间是内存1.5倍 命令: grep   ...

  6. matlab学习笔记 bsxfun函数

    matlab学习笔记 bsxfun函数 最近总是遇到 bsxfun这个函数,前几次因为无关紧要只是大概看了一下函数体去对比结果,今天再一次遇见了这个函数,想想还是有必要掌握的,遂查了些资料总结如下. ...

  7. 设置button不同状态下的背景色,即把这个颜色变成图片设置成,背景图片

    - (void)setBackgroundColor:(UIColor *)backgroundColor forState:(UIControlState)state { [self setBack ...

  8. photoshop几个基本技巧

    原文地址:http://blog.thmz.com/user1/936/archives/2008/20418.htm 去除文字的几种方法: 1.访印图章工具 2.修补工具 3.修复画笔工具 4.画笔 ...

  9. Egret命令行小结

    1. build 构建指定项目,编译指定项目的TypeScript文件2. create 创建新项目3. create_app 从h5游戏生成app4. create_mainfest 在工程目录下生 ...

  10. 漂亮的title提示信息

    <HTML> <HEAD> <title>一种很酷的文字提示效果演示</title> <style> .tableBorder7{width ...