HDU1695 GCD (欧拉函数+容斥原理)
Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Input
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Output
Sample Input
1 3 1 5 1
1 11014 1 14409 9
Sample Output
Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d)。
b和d分别除以k之后的区间里面,只需要求gcd(x, y) = 1就可以了,这样子求出的数的对数不变。
这道题目还要求1-3 和 3-1 这种情况算成一种,因此只需要限制x<y就可以了
只需要枚举x,然后确定另一个区间里面有多少个y就可以了。因此问题转化成为区间(1, d)里面与x互素的数的个数
先求出x的所有质因数,因此(1,d)区间里面是x的质因数倍数的数都不会与x互素,因此,只需要求出这些数的个数,减掉就可以了。
如果w是x的素因子,则(1,d)中是w倍数的数共有d/w个。
容斥原理:
所有不与x互素的数的个数= 1个因子倍数的个数 - 2个因子乘积的倍数的个数 + 3个……-……
答案很大,用long long。
所有数的素因子,预先处理保存一下,不然会超时的。
#include<iostream>
using namespace std;
const int Max=;
__int64 elur[Max];//存放每个数的欧拉函数值
int num[Max];//存放数的素因子个数
int p[Max][];//存放数的素因子
void init()//筛选法得到数的素因子及每个数的欧拉函数值
{
elur[]=;
for(int i=;i<Max;i++)
{
if(!elur[i])
{
for(int j=i;j<Max;j+=i)
{
if(!elur[j])
elur[j]=j;
elur[j]=elur[j]*(i-)/i;
p[j][num[j]++]=i;
}
}
elur[i]+=elur[i-]; //进行累加(法里数列长度)
}
}
int dfs(int idx,int b,int now)//求不大于b的数中,与now不互质的数的个数;
{ //dfs()写的容斥原理
int ans=;
for(int i=idx;i<num[now];i++)//容斥原理来求A1并A2并A3.....并Ak的元素的数的个数.
ans += b/p[now][i]-dfs(i+,b/p[now][i],now);
return ans;
} int main()
{
int t,a,b,c,d,k;
init();
scanf("%d",&t);
for(int ca=;ca<=t;ca++)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",ca);
if(k==)
{
printf("0\n");
continue;
}
if(b>d)
swap(b,d);
b/=k; d/=k;
__int64 ans=elur[b];
for(int i=b+;i<=d;i++)
ans+=b-dfs(,b,i);//求不大于b的数中,与i不互质的数的个数
printf("%I64d\n",ans);
}
return ;
}
HDU1695 GCD (欧拉函数+容斥原理)的更多相关文章
- [hdu1695] GCD ——欧拉函数+容斥原理
题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥原理+质因数分解
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- hdu (欧拉函数+容斥原理) GCD
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
随机推荐
- HDU2509 Be the Winner
Be the Winner Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- Erlang之父的学习历史及学习建议
当我开始学习编程的时候(1967年),我可以在 FORTRAN 和(传说中的)Algol 之间选择,不过没有任何人了解 Algol,所以我选择了 FORTRAN. 在我最早学习编程的时候,我的编程周期 ...
- STL Iterators
Summary of Chapter 33 STL Iterators from The C++ Programming Language 4th. Ed., Bjarne Stroustrup. - ...
- Ubuntu学习总结-03 安装软件 & 技巧
1 UBuntu 安装 Googole Chrome 首先下载软件 wget https://dl.google.com/linux/direct/google-chrome-stable_curre ...
- 轻量级应用开发之(01)第一个IOS程序
一 IPhone轻量级开发 1. 开发环境 Mac 版本: OS X EICap 10.11.3 (15D21) XCode开发版本: Version 7.2.1 (7C1002) 2.简单分析 UI ...
- JDK,JRE,JVM区别与联系(ZZ)
http://www.cnblogs.com/hencehong/p/3252166.html 我们开发的实际情况是:我们利用JDK(调用JAVA API)开发了属于我们自己的JAVA程序后,通过JD ...
- Eclipse开发Android程序如何在手机上运行
android开发不论是在真机上调试还是最终发布到真机上都非常简单,过程如下: 1.安装usb驱动 手机要能与电脑相连,当然要安驱动了.效果就是你插入手机,电脑显示驱动已识别.驱动安装的官方教程:ht ...
- Spring学习5-Spring整合JDBC及其事务处理(注解方式)
一.整合的步骤 1.步骤一:首先要获得DataSource连接池(推荐使用B方式): 要对数据库执行任何的JDBC操作,需要有一个Connection.在Spring中,Connection对象是 ...
- 思维固化,addTarget难道就只能给self
使用前提 调用某个对象的,一个无参数的方法 如[self.view resignFirstResponder] 注意 [self.view endEdting:YES]就不行,要是无参数的
- zencart资源
http://www.zen-cart.cn/ http://www.ezencart.com/