【BZOJ】1069: [SCOI2007]最大土地面积(凸包+旋转卡壳)
http://www.lydsy.com/JudgeOnline/problem.php?id=1069
显然这四个点在凸包上,然后枚举两个点找上下最大的三角形即可。
找三角形表示只想到三分QAQ。。。。。。。
看了题解发现。。。。这是单调的。。。。直接扫。。。然后,这货叫“旋转卡壳”?是qia还是ka。。。。
自己一开始写的wa了。。。。。。。。然后照标程写,,又wa了。。。。
后来发现是凸包写渣了QAQ。。。自己原来的找三角形是没问题的。。。我好sb。。。。。
可是,为嘛凸包这样写会错。
cross(b[cnt], a[i], b[cnt-1])<=0变成cross(a[i], b[cnt], b[cnt-1])>0为嘛会错!!!!!!!
//upd:^(*&%*^^我为什么那么逗。。。。不应该是>=0吗。。。。。。。。。。。。。
2015.4.20 upd:
那是因为数据中有重复点!去掉重复点就能a啦!
如果凸包求的是允许三点共线的,那么数据中不能出现重复点!(因为这样会使得求凸壳出错!
两个写法:
自己yy的(凸包那里改了)
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const int N=2005;
struct dat { double x, y; }a[N], b[N];
int n, cnt;
double suml[N][N], sumr[N][N];
bool cmp(const dat &a, const dat &b) { return a.x<b.x; }
double cross(const dat &a, const dat &b, const dat &c) {
static dat x, y;
x.x=a.x-c.x; x.y=a.y-c.y;
y.x=b.x-c.x; y.y=b.y-c.y;
return x.x*y.y-y.x*x.y;
}
void tb() {
sort(a+1, a+1+n, cmp);
for1(i, 1, n) {
while(cnt>1 && cross(b[cnt], a[i], b[cnt-1])<=0) --cnt;
b[++cnt]=a[i];
}
int k=cnt;
for3(i, n-1, 1) {
while(cnt>k && cross(b[cnt], a[i], b[cnt-1])<=0) --cnt;
b[++cnt]=a[i];
}
if(n>1) --cnt;
}
double S(const dat &a, const dat &b, const dat &c) { return abs(cross(a, b, c))/2.0; }
void work() {
int mid, nxt, j;
for1(i, 1, n) {
mid=(i%n)+1;
for1(t, 1, n-2) {
j=(i+t)%n+1;
nxt=(mid%n)+1;
while(nxt!=j && S(b[i], b[j], b[nxt])>=S(b[i], b[j], b[mid])) { mid=nxt; nxt=(mid%n)+1; }
suml[i][j]=S(b[i], b[j], b[mid]); //printf("%d %d chose:%d: S:%.3f\n", i, j, mid, suml[i][j]);
}
mid=(i-2+n)%n+1;
for1(t, 1, n-2) {
j=(i-2+n-t+n)%n+1;
nxt=(mid-2+n)%n+1;
while(nxt!=j && S(b[i], b[j], b[nxt])>=S(b[i], b[j], b[mid])) { mid=nxt; nxt=((mid-2+n)%n)+1; }
sumr[i][j]=S(b[i], b[j], b[mid]);
}
}
} int main() {
read(n);
for1(i, 1, n) scanf("%lf%lf", &a[i].x, &a[i].y);
tb(); n=cnt;
//for1(i, 1, n) printf("%.2f %.2f\n", b[i].x, b[i].y);
work(); double ans=0;
for1(i, 1, n) for1(j, 1, n) if(suml[i][j] && sumr[i][j]) ans=max(ans, suml[i][j]+sumr[i][j]);
printf("%.3f", ans);
return 0;
}
照hzwer神犇的:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const int N=2005;
struct dat { double x, y; }a[N], b[N];
int n, cnt;
bool cmp(const dat &a, const dat &b) { return a.x<b.x; }
double cross(const dat &a, const dat &b, const dat &c) {
static dat x, y;
x.x=a.x-c.x; x.y=a.y-c.y;
y.x=b.x-c.x; y.y=b.y-c.y;
return x.x*y.y-y.x*x.y;
}
void tb() {
sort(a+1, a+1+n, cmp);
for1(i, 1, n) {
while(cnt>1 && cross(b[cnt], a[i], b[cnt-1])<=0) --cnt;
b[++cnt]=a[i];
}
int k=cnt;
for3(i, n-1, 1) {
while(cnt>k && cross(b[cnt], a[i], b[cnt-1])<=0) --cnt;
b[++cnt]=a[i];
}
if(n>1) --cnt;
}
double S(const dat &a, const dat &b, const dat &c) { return abs(cross(a, b, c)); }
double work() {
b[cnt+1]=b[1];
int dmid, umid;
double ret=0;
for1(i, 1, n) {
dmid=(i%n)+1, umid=((i+2)%n)+1;
for1(j, i+2, n) {
while((dmid%n)+1!=j && S(b[i], b[j], b[dmid+1])>=S(b[i], b[j], b[dmid])) dmid=(dmid%n)+1;
while((umid%n)+1!=i && S(b[i], b[j], b[umid+1])>=S(b[i], b[j], b[umid])) umid=(umid%n)+1;
ret=max(ret, S(b[i], b[j], b[dmid])+S(b[i], b[j], b[umid]));//printf("%d %d chose:%d: S:%.3f\n", i, j, mid, suml[i][j]);
}
}
return ret/2.0;
} int main() {
read(n);
for1(i, 1, n) scanf("%lf%lf", &a[i].x, &a[i].y);
tb(); n=cnt;
//for1(i, 1, n) printf("%.2f %.2f\n", b[i].x, b[i].y);
printf("%.3f", work());
return 0;
}
Description
在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大。
Input
第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。
Output
最大的多边形面积,答案精确到小数点后3位。
Sample Input
0 0
1 0
1 1
0 1
0.5 0.5
Sample Output
HINT
数据范围 n<=2000, |x|,|y|<=100000
Source
【BZOJ】1069: [SCOI2007]最大土地面积(凸包+旋转卡壳)的更多相关文章
- bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳
题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...
- bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2277 Solved: 853[Submit][Stat ...
- [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3669 Solved: 1451[Submit][Sta ...
- bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积
在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...
- luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳
LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...
- BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)
题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...
- BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 2978 Solved: 1173[Submit][Sta ...
- bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...
- 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳
因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...
- ●BZOJ 1069 [SCOI2007]最大土地面积
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1069 题解: 计算几何,凸包,旋转卡壳 其实和这个题差不多,POJ 2079 Triangl ...
随机推荐
- PHP很有用的一个函数ignore_user_abort ()
PHP很有用的一个函数ignore_user_abort () 2013-01-16 14:21:31| 分类: PHP | 标签:php 函数 |举报|字号 订阅 ignore_us ...
- 【Hibernate】Hibernate系列2之Session详解
Session详解 2.1.概述-一级缓存 2.2.操作session缓存方法 2.3.数据库隔离级别 2.4.持久化状态 2.5.状态转换 2.6.存储过程与触发器
- kettle作业中的js如何写日志文件
在kettle作业中JavaScript脚本有时候也扮演非常重要的角色,此时我们希望有一些日志记录.下面是job中JavaScript记录日志的方式. job的js写日志的方法. 得到日志输出实例 o ...
- project.json
概述 项目相关配置,由原来的cocos2d.js中转移到project.json中,该文件需要与index.html同级,一般建议放在根目录下. 字段说明 debugMode 相当于原来的COCOS2 ...
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- 告别div,可以代替div的几个标签
几个最常用的用来代替DIV的HTML5元素 虽说html5中大多数功能性的元素如<video><canvas><audio>等还得不到当前主流浏览器的支持(主要就是 ...
- shell定时任务
1.认识Croncron是一个linux下的定时执行工具,可以在无需人工干预的情况下运行作业.由于Cron 是Linux的内置服务,但它不自动起来,可以用以下的方法启动.关闭这个服务:/sbin/se ...
- svn 创建
1.ps aux | grep svn 杀掉进程 2.svnadmin create /svnrepertory/SVNwangping 创建svn仓库; 3.修改3个文件 4.svnserve -d ...
- jquery easy ui 1.3.4 Tree树形菜单(9)
9.1.创建树形菜单 <ul id="tt" class="easyui-tree"> <li><span>第一级</ ...
- Mac OS X 上的安装Lisp开发环境
到网站:https://common-lisp.net/project/lispbox/ 下载lispbox 解压下载下来的包,找到Emacs 测试: 我们也可以使用homebrew来安装lisp的解 ...