Principle of Computing (Python)学习笔记(7) DFS Search + Tic Tac Toe use MiniMax Stratedy
1. Trees
Tree is a recursive structure.
1.1 math nodes
https://class.coursera.org/principlescomputing-001/wiki/view?
page=trees
1.2 CODE无parent域的树
http://www.codeskulptor.org/#poc_tree.py
class Tree:
"""
Recursive definition for trees plus various tree methods
""" def __init__(self, value, children):
"""
Create a tree whose root has specific value (a string)
Children is a list of references to the roots of the subtrees.
""" self._value = value
self._children = children def __str__(self):
"""
Generate a string representation of the tree
Use an pre-order traversal of the tree
""" ans = "["
ans += str(self._value) for child in self._children:
ans += ", "
ans += str(child)
return ans + "]" def get_value(self):
"""
Getter for node's value
"""
return self._value def children(self):
"""
Generator to return children
"""
for child in self._children:
yield child def num_nodes(self):
"""
Compute number of nodes in the tree
"""
ans = 1
for child in self._children:
ans += child.num_nodes()
return ans def num_leaves(self):
"""
Count number of leaves in tree
"""
if len(self._children) == 0:
return 1 ans = 0
for child in self._children:
ans += child.num_leaves()
return ans def height(self):
"""
Compute height of a tree rooted by self
"""
height = 0
for child in self._children:
height = max(height, child.height() + 1)
return height def run_examples():
"""
Create some trees and apply various methods to these trees
"""
tree_a = Tree("a", [])
tree_b = Tree("b", [])
print "Tree consisting of single leaf node labelled 'a'", tree_a
print "Tree consisting of single leaf node labelled 'b'", tree_b tree_cab = Tree("c", [tree_a, tree_b])
print "Tree consisting of three node", tree_cab tree_dcabe = Tree("d", [tree_cab, Tree("e", [])])
print "Tree consisting of five nodes", tree_dcabe
print my_tree = Tree("a", [Tree("b", [Tree("c", []), Tree("d", [])]),
Tree("e", [Tree("f", [Tree("g", [])]), Tree("h", []), Tree("i", [])])])
print "Tree with nine nodes", my_tree print "The tree has", my_tree.num_nodes(), "nodes,",
print my_tree.num_leaves(), "leaves and height",
print my_tree.height() #import poc_draw_tree
#poc_draw_tree.TreeDisplay(my_tree) #run_examples()
1.3 CODE有parent域的树
http://www.codeskulptor.org/#user36_3SjNfYqJMV_4.py
import poc_tree class NavTree(poc_tree.Tree):
"""
Recursive definition for navigable trees plus extra tree methods
""" def __init__(self, value, children, parent = None):
"""
Create a tree whose root has specific value (a string)
children is a list of references to the roots of the children.
parent (if specified) is a reference to the tree's parent node
""" poc_tree.Tree.__init__(self, value, children)
self._parent = parent
for child in self._children:
child._parent = self def set_parent(self, parent):
"""
Update parent field
"""
self._parent = parent def get_root(self):
"""
Return the root of the tree
"""
if self._parent == None:
return self;
else:
return self._parent.get_root(); def depth(self):
"""
Return the depth of the self with respect to the root of the tree
"""
pass def run_examples():
"""
Create some trees and apply various methods to these trees
"""
tree_a = NavTree("a", [])
tree_b = NavTree("b", [])
tree_cab = NavTree("c", [tree_a, tree_b])
tree_e = NavTree("e", [])
tree_dcabe = NavTree("d", [tree_cab, tree_e]) print "This is the main tree -", tree_dcabe
print "This is tree that contains b -", tree_b.get_root() import poc_draw_tree
poc_draw_tree.TreeDisplay(tree_dcabe) print "The node b has depth", tree_b.depth()
print "The node e has depth", tree_e.depth() run_examples() # Expect output #This is the main tree - [d, [c, [a], [b]], [e]]]
#This is tree that contains b - [d, [c, [a], [b]], [e]]
#The node b has depth 2
#The node e has depth 1
1.4 CODE arithmetic expreesion由树来表达
Interior nodes in the tree are always arithmetic operators. The leaves of the tree are always numbers.
http://www.codeskulptor.org/#poc_arith_expression.py
# import Tree class definition
import poc_tree # Use dictionary of lambdas to abstract function definitions OPERATORS = {"+" : (lambda x, y : x + y),
"-" : (lambda x, y : x - y),
"*" : (lambda x, y : x * y),
"/" : (lambda x, y : x / y),
"//" : (lambda x, y : x // y),
"%" : (lambda x, y : x % y)} class ArithmeticExpression(poc_tree.Tree):
"""
Basic operations on arithmetic expressions
""" def __init__(self, value, children, parent = None):
"""
Create an arithmetic expression as a tree
"""
poc_tree.Tree.__init__(self, value, children) def __str__(self):
"""
Generate a string representation for an arithmetic expression
""" if len(self._children) == 0:
return str(self._value)
ans = "("
ans += str(self._children[0])
ans += str(self._value)
ans += str(self._children[1])
ans += ")"
return ans def evaluate(self):
"""
Evaluate the arithmetic expression
""" if len(self._children) == 0:
if "." in self._value:
return float(self._value)
else:
return int(self._value)
else:
function = OPERATORS[self._value]
left_value = self._children[0].evaluate()
right_value = self._children[1].evaluate()
return function(left_value, right_value) def run_example():
"""
Create and evaluate some examples of arithmetic expressions
""" one = ArithmeticExpression("1", [])
two = ArithmeticExpression("2", [])
three = ArithmeticExpression("3", [])
print one
print one.evaluate() one_plus_two = ArithmeticExpression("+", [one, two])
print one_plus_two
print one_plus_two.evaluate() one_plus_two_times_three = ArithmeticExpression("*", [one_plus_two, three])
print one_plus_two_times_three import poc_draw_tree
poc_draw_tree.TreeDisplay(one_plus_two_times_three)
print one_plus_two_times_three.evaluate() run_example()
2 List
In Python, lists are primarily iterative data structures that are processed using loops. However, in other languages such as Lisp and Scheme, lists are treated primarily as recursive data structures and processed
recursively.
2.1 a list example
class NodeList:
"""
Basic class definition for non-empty lists using recursion
""" def __init__(self, val):
"""
Create a list with one node
"""
self._value = val
self._next = None def append(self, val):
"""
Append a node to an existing list of nodes
"""
# print "---------called---append()--------\n"
if self._next == None:
# print "A:"+str(isinstance(val,int))+"\n";
# print "B:"+str(isinstance(val,type(self)))+"\n";
new_node = NodeList(val)
self._next = new_node
else:
self._next.append(val) def __str__(self):
"""
Build standard string representation for list
"""
if self._next == None:
return "[" + str(self._value) + "]"
else:
rest_str = str(self._next)
rest_str = rest_str[1 :]
return "[" + str(self._value) + ", " + rest_str def run_example():
"""
Create some examples
"""
node_list = NodeList(2) print node_list sub_list = NodeList(5)
# print "--------"
sub_list.append(6)
# print "--------"
sub_list2 = sub_list
node_list.append(sub_list)
node_list.append(sub_list2)
print node_list run_example()
3 Minimax
https://class.coursera.org/principlescomputing-001/wiki/minimax
X and O alternate back and forth between min and max.
In X’s term, try to maximize the score.
the O’s term, try to minimize the score.
4 Mini Project Tic Tac Toe with Minimax
"""
Mini-max Tic-Tac-Toe Player
""" import poc_ttt_gui
import poc_ttt_provided as provided # Set timeout, as mini-max can take a long time
import codeskulptor
codeskulptor.set_timeout(60) # SCORING VALUES - DO NOT MODIFY
SCORES = {provided.PLAYERX: 1,
provided.DRAW: 0,
provided.PLAYERO: -1} def minimax(board, player):
"""
Make a move through minimax method.
"""
check_res = board.check_win()
if check_res != None:
return SCORES[check_res] , (-1,-1)
else:
empty_list = board.get_empty_squares()
com_score = -2
max_score = -2
max_each = (-1,-1)
changed_player = provided.switch_player(player)
for each in empty_list:
cur_board = board.clone()
cur_board.move(each[0], each[1], player)
cur_score_tuple = minimax(cur_board, changed_player)
cur_score = cur_score_tuple[0]
if cur_score * SCORES[player] > com_score:
com_score = cur_score * SCORES[player] # used for compare
max_score = cur_score # used for return a value
max_each = each
if com_score == 1:
return max_score, max_each
return max_score, max_each def mm_move(board, player):
"""
Make a move on the board. Returns a tuple with two elements. The first element is the score
of the given board and the second element is the desired move as a
tuple, (row, col).
"""
# print "-----------------new_move--------------"
# print "B1:"+" player="+str(player)+"\n"
# print board
# print "----------------"
score_and_board = minimax(board, player)
# print "C1"
# print score_and_board
# print "-----------------new_move--------------"
return score_and_board def move_wrapper(board, player, trials):
"""
Wrapper to allow the use of the same infrastructure that was used
for Monte Carlo Tic-Tac-Toe.
"""
move = mm_move(board, player)
assert move[1] != (-1, -1), "returned illegal move (-1, -1)"
return move[1] # Test game with the console or the GUI.
# Uncomment whichever you prefer.
# Both should be commented out when you submit for
# testing to save time. #test1
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERX)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.PLAYERO, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.PLAYERX]]), provided.PLAYERX)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERO)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.PLAYERX]]), provided.PLAYERO)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERX)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.EMPTY], [provided.EMPTY, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERX)
#mm_move(provided.TTTBoard(2, False, [[provided.EMPTY, provided.EMPTY], [provided.EMPTY, provided.EMPTY]]), provided.PLAYERX)
#test1 #provided.play_game(move_wrapper, 1, False)
#poc_ttt_gui.run_gui(3, provided.PLAYERO, move_wrapper, 1, False)
注意上面的minimax()方法进行了一些简化处理:
In Minimax, you need to alternate between maximizing and minimizing. Given the SCORES that we have provided you with, player X is always the maximizing player and play O is always the minimizing player. You can use an if-else statement to decide when to
maximize and when to minimize. But, you can also be more clever by noticing that if you multiply the score by SCORES[player] then you can always maximize
假设要用if else的写法。是这种:
check_res = board.check_win()
if check_res != None:
return SCORES[check_res] , (-1,-1)
else:
empty_list = board.get_empty_squares()
if player == provided.PLAYERX:
max_score = -2;
max_each = (-1,-1)
changed_player = provided.switch_player(player)
for each in empty_list:
cur_board= board.clone()
cur_board.move(each[0], each[1], player)
cur_score_tuple = minimax(cur_board, changed_player)
cur_score = cur_score_tuple[0]
if cur_score > max_score:
max_score = cur_score
max_each = each
if max_score == SCORES[provided.PLAYERX]:
return max_score, max_each
return max_score, max_each
elif player == provided.PLAYERO:
min_score = 2;
min_each = (-1,-1)
changed_player = provided.switch_player(player)
for each in empty_list:
cur_board= board.clone()
cur_board.move(each[0], each[1], player)
cur_score_tuple = minimax(cur_board, changed_player)
cur_score = cur_score_tuple[0]
if cur_score < min_score:
min_score = cur_score
min_each = each
if min_score == SCORES[provided.PLAYERO]:
return min_score, min_each
return min_score, min_each
Principle of Computing (Python)学习笔记(7) DFS Search + Tic Tac Toe use MiniMax Stratedy的更多相关文章
- Principle of Computing (Python)学习笔记(5) BFS Searching + Zombie Apocalypse
1 Generators Generator和list comprehension非常类似 Generators are a kind of iterator that are defined l ...
- OpenCV之Python学习笔记
OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书< ...
- python学习笔记整理——字典
python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...
- VS2013中Python学习笔记[Django Web的第一个网页]
前言 前面我简单介绍了Python的Hello World.看到有人问我搞搞Python的Web,一时兴起,就来试试看. 第一篇 VS2013中Python学习笔记[环境搭建] 简单介绍Python环 ...
- python学习笔记之module && package
个人总结: import module,module就是文件名,导入那个python文件 import package,package就是一个文件夹,导入的文件夹下有一个__init__.py的文件, ...
- python学习笔记(六)文件夹遍历,异常处理
python学习笔记(六) 文件夹遍历 1.递归遍历 import os allfile = [] def dirList(path): filelist = os.listdir(path) for ...
- python学习笔记--Django入门四 管理站点--二
接上一节 python学习笔记--Django入门四 管理站点 设置字段可选 编辑Book模块在email字段上加上blank=True,指定email字段为可选,代码如下: class Autho ...
- python学习笔记--Django入门0 安装dangjo
经过这几天的折腾,经历了Django的各种报错,翻译的内容虽然不错,但是与实际的版本有差别,会出现各种奇葩的错误.现在终于找到了解决方法:查看英文原版内容:http://djangobook.com/ ...
- python学习笔记(一)元组,序列,字典
python学习笔记(一)元组,序列,字典
随机推荐
- 快速学会使用Fiddler抓包 截包伪造提交包
1.Fiddler介绍 Fiddler是一个http协议调试代理工具,它能够记录并检查所有你的电脑,移动设备和互联网之间的http通讯,设置断点,查看所有的"进出"Fiddler的 ...
- 3.Apache ZooKeeper数据模型
1. ZooKeeper自下向上的服务视图 Apache ZooKeeper是分布式应用程序的协调服务. 它旨在解决分布式应用程序中与组件协调相关的棘手问题. 它通过暴露一个简单而强大的接口来实现这一 ...
- VUE环境配置——运行Demo
如果有Vue的Demo 不知道怎么运行的同学可以看这里 这里只讲Win下面环境配置 一.NodeJs安装 1.下载Windows 安装包(.msi),并安装https://nodejs.org/d ...
- 配置ssh免密码登陆
以root账户为例 准备两台以上的Linux服务器,我这里用的是s204,s205两台机器,多台同样的 先使用ssh登录试一下,如果没有安装则需要先安装一下 ssh s205会提示你输入密码 原理 ...
- Linux命令学习备忘
格式: 命令:原理:实践及截图 1.su <user> 执行该命令,需要输入password,它是<user>中定义的用户的password,即,要变换成的用户的passw ...
- Redis学习-内存优化
以下为个人学习Redis的备忘录--内存优化 1.随时查看info memory,了解内存使用状况:127.0.0.1:6379> info memory# Memoryused_memory: ...
- Oracle常用的数值函数,日期函数
---恢复内容开始--- 数值函数 常用的处理数值的函数有如下: No. 函数名 含义 1 round(x[,y]) 返回四舍五入后的值 2 trunc(x[,y]) 不会四舍五入 3 mod(x,y ...
- python 保存命令执行结果
保存命令执行的结果需哟使用os.popen("系统命令").read(),然后使用变量赋值输出即可 >>> result = os.popen("df ...
- linux 安装nginx 详解
1 nginx安装环境 nginx是C语言开发,建议在linux上运行,本教程使用Centos6.5作为安装环境. n gcc 安装nginx需要先将官网下载的源码进行编译,编译依赖gcc环境,如果没 ...
- day01_HTML
今日任务 网站信息页面案例 网站图片信息页面案例 网站友情链接页面案例 网站首页案例 网站后台页面案例 教学目标 了解什么是标记语言 了解HTML的框架标签 掌握HTML的主要标签(字体,图片,列表, ...