1. Trees

Tree is a recursive structure.

1.1 math nodes

https://class.coursera.org/principlescomputing-001/wiki/view?

page=trees

1.2 CODE无parent域的树

http://www.codeskulptor.org/#poc_tree.py

class Tree:
"""
Recursive definition for trees plus various tree methods
""" def __init__(self, value, children):
"""
Create a tree whose root has specific value (a string)
Children is a list of references to the roots of the subtrees.
""" self._value = value
self._children = children def __str__(self):
"""
Generate a string representation of the tree
Use an pre-order traversal of the tree
""" ans = "["
ans += str(self._value) for child in self._children:
ans += ", "
ans += str(child)
return ans + "]" def get_value(self):
"""
Getter for node's value
"""
return self._value def children(self):
"""
Generator to return children
"""
for child in self._children:
yield child def num_nodes(self):
"""
Compute number of nodes in the tree
"""
ans = 1
for child in self._children:
ans += child.num_nodes()
return ans def num_leaves(self):
"""
Count number of leaves in tree
"""
if len(self._children) == 0:
return 1 ans = 0
for child in self._children:
ans += child.num_leaves()
return ans def height(self):
"""
Compute height of a tree rooted by self
"""
height = 0
for child in self._children:
height = max(height, child.height() + 1)
return height def run_examples():
"""
Create some trees and apply various methods to these trees
"""
tree_a = Tree("a", [])
tree_b = Tree("b", [])
print "Tree consisting of single leaf node labelled 'a'", tree_a
print "Tree consisting of single leaf node labelled 'b'", tree_b tree_cab = Tree("c", [tree_a, tree_b])
print "Tree consisting of three node", tree_cab tree_dcabe = Tree("d", [tree_cab, Tree("e", [])])
print "Tree consisting of five nodes", tree_dcabe
print my_tree = Tree("a", [Tree("b", [Tree("c", []), Tree("d", [])]),
Tree("e", [Tree("f", [Tree("g", [])]), Tree("h", []), Tree("i", [])])])
print "Tree with nine nodes", my_tree print "The tree has", my_tree.num_nodes(), "nodes,",
print my_tree.num_leaves(), "leaves and height",
print my_tree.height() #import poc_draw_tree
#poc_draw_tree.TreeDisplay(my_tree) #run_examples()

1.3 CODE有parent域的树

http://www.codeskulptor.org/#user36_3SjNfYqJMV_4.py

import poc_tree

class NavTree(poc_tree.Tree):
"""
Recursive definition for navigable trees plus extra tree methods
""" def __init__(self, value, children, parent = None):
"""
Create a tree whose root has specific value (a string)
children is a list of references to the roots of the children.
parent (if specified) is a reference to the tree's parent node
""" poc_tree.Tree.__init__(self, value, children)
self._parent = parent
for child in self._children:
child._parent = self def set_parent(self, parent):
"""
Update parent field
"""
self._parent = parent def get_root(self):
"""
Return the root of the tree
"""
if self._parent == None:
return self;
else:
return self._parent.get_root(); def depth(self):
"""
Return the depth of the self with respect to the root of the tree
"""
pass def run_examples():
"""
Create some trees and apply various methods to these trees
"""
tree_a = NavTree("a", [])
tree_b = NavTree("b", [])
tree_cab = NavTree("c", [tree_a, tree_b])
tree_e = NavTree("e", [])
tree_dcabe = NavTree("d", [tree_cab, tree_e]) print "This is the main tree -", tree_dcabe
print "This is tree that contains b -", tree_b.get_root() import poc_draw_tree
poc_draw_tree.TreeDisplay(tree_dcabe) print "The node b has depth", tree_b.depth()
print "The node e has depth", tree_e.depth() run_examples() # Expect output #This is the main tree - [d, [c, [a], [b]], [e]]]
#This is tree that contains b - [d, [c, [a], [b]], [e]]
#The node b has depth 2
#The node e has depth 1

1.4 CODE arithmetic expreesion由树来表达

Interior nodes in the tree are always arithmetic operators. The leaves of the tree are always numbers.

http://www.codeskulptor.org/#poc_arith_expression.py

# import Tree class definition
import poc_tree # Use dictionary of lambdas to abstract function definitions OPERATORS = {"+" : (lambda x, y : x + y),
"-" : (lambda x, y : x - y),
"*" : (lambda x, y : x * y),
"/" : (lambda x, y : x / y),
"//" : (lambda x, y : x // y),
"%" : (lambda x, y : x % y)} class ArithmeticExpression(poc_tree.Tree):
"""
Basic operations on arithmetic expressions
""" def __init__(self, value, children, parent = None):
"""
Create an arithmetic expression as a tree
"""
poc_tree.Tree.__init__(self, value, children) def __str__(self):
"""
Generate a string representation for an arithmetic expression
""" if len(self._children) == 0:
return str(self._value)
ans = "("
ans += str(self._children[0])
ans += str(self._value)
ans += str(self._children[1])
ans += ")"
return ans def evaluate(self):
"""
Evaluate the arithmetic expression
""" if len(self._children) == 0:
if "." in self._value:
return float(self._value)
else:
return int(self._value)
else:
function = OPERATORS[self._value]
left_value = self._children[0].evaluate()
right_value = self._children[1].evaluate()
return function(left_value, right_value) def run_example():
"""
Create and evaluate some examples of arithmetic expressions
""" one = ArithmeticExpression("1", [])
two = ArithmeticExpression("2", [])
three = ArithmeticExpression("3", [])
print one
print one.evaluate() one_plus_two = ArithmeticExpression("+", [one, two])
print one_plus_two
print one_plus_two.evaluate() one_plus_two_times_three = ArithmeticExpression("*", [one_plus_two, three])
print one_plus_two_times_three import poc_draw_tree
poc_draw_tree.TreeDisplay(one_plus_two_times_three)
print one_plus_two_times_three.evaluate() run_example()

2 List

In Python, lists are primarily iterative data structures that are processed using loops. However, in other languages such as Lisp and Scheme, lists are treated primarily as recursive data structures and processed
recursively.



2.1 a list example

class NodeList:
"""
Basic class definition for non-empty lists using recursion
""" def __init__(self, val):
"""
Create a list with one node
"""
self._value = val
self._next = None def append(self, val):
"""
Append a node to an existing list of nodes
"""
# print "---------called---append()--------\n"
if self._next == None:
# print "A:"+str(isinstance(val,int))+"\n";
# print "B:"+str(isinstance(val,type(self)))+"\n";
new_node = NodeList(val)
self._next = new_node
else:
self._next.append(val) def __str__(self):
"""
Build standard string representation for list
"""
if self._next == None:
return "[" + str(self._value) + "]"
else:
rest_str = str(self._next)
rest_str = rest_str[1 :]
return "[" + str(self._value) + ", " + rest_str def run_example():
"""
Create some examples
"""
node_list = NodeList(2) print node_list sub_list = NodeList(5)
# print "--------"
sub_list.append(6)
# print "--------"
sub_list2 = sub_list
node_list.append(sub_list)
node_list.append(sub_list2)
print node_list run_example()

3 Minimax

https://class.coursera.org/principlescomputing-001/wiki/minimax

X and O alternate back and forth between min and max.

In X’s term, try to maximize the score.

the O’s term, try to minimize the score.

4 Mini Project Tic Tac Toe with Minimax

"""
Mini-max Tic-Tac-Toe Player
""" import poc_ttt_gui
import poc_ttt_provided as provided # Set timeout, as mini-max can take a long time
import codeskulptor
codeskulptor.set_timeout(60) # SCORING VALUES - DO NOT MODIFY
SCORES = {provided.PLAYERX: 1,
provided.DRAW: 0,
provided.PLAYERO: -1} def minimax(board, player):
"""
Make a move through minimax method.
"""
check_res = board.check_win()
if check_res != None:
return SCORES[check_res] , (-1,-1)
else:
empty_list = board.get_empty_squares()
com_score = -2
max_score = -2
max_each = (-1,-1)
changed_player = provided.switch_player(player)
for each in empty_list:
cur_board = board.clone()
cur_board.move(each[0], each[1], player)
cur_score_tuple = minimax(cur_board, changed_player)
cur_score = cur_score_tuple[0]
if cur_score * SCORES[player] > com_score:
com_score = cur_score * SCORES[player] # used for compare
max_score = cur_score # used for return a value
max_each = each
if com_score == 1:
return max_score, max_each
return max_score, max_each def mm_move(board, player):
"""
Make a move on the board. Returns a tuple with two elements. The first element is the score
of the given board and the second element is the desired move as a
tuple, (row, col).
"""
# print "-----------------new_move--------------"
# print "B1:"+" player="+str(player)+"\n"
# print board
# print "----------------"
score_and_board = minimax(board, player)
# print "C1"
# print score_and_board
# print "-----------------new_move--------------"
return score_and_board def move_wrapper(board, player, trials):
"""
Wrapper to allow the use of the same infrastructure that was used
for Monte Carlo Tic-Tac-Toe.
"""
move = mm_move(board, player)
assert move[1] != (-1, -1), "returned illegal move (-1, -1)"
return move[1] # Test game with the console or the GUI.
# Uncomment whichever you prefer.
# Both should be commented out when you submit for
# testing to save time. #test1
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERX)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.PLAYERO, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.PLAYERX]]), provided.PLAYERX)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERO)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.PLAYERX]]), provided.PLAYERO)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERX)
#mm_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.EMPTY], [provided.EMPTY, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERX)
#mm_move(provided.TTTBoard(2, False, [[provided.EMPTY, provided.EMPTY], [provided.EMPTY, provided.EMPTY]]), provided.PLAYERX)
#test1 #provided.play_game(move_wrapper, 1, False)
#poc_ttt_gui.run_gui(3, provided.PLAYERO, move_wrapper, 1, False)

注意上面的minimax()方法进行了一些简化处理:

In Minimax, you need to alternate between maximizing and minimizing. Given the SCORES that we have provided you with, player X is always the maximizing player and play O is always the minimizing player. You can use an if-else statement to decide when to
maximize and when to minimize. But, you can also be more clever by noticing that if you multiply the score by SCORES[player] then you can always maximize

假设要用if else的写法。是这种:

    check_res = board.check_win()
if check_res != None:
return SCORES[check_res] , (-1,-1)
else:
empty_list = board.get_empty_squares()
if player == provided.PLAYERX:
max_score = -2;
max_each = (-1,-1)
changed_player = provided.switch_player(player)
for each in empty_list:
cur_board= board.clone()
cur_board.move(each[0], each[1], player)
cur_score_tuple = minimax(cur_board, changed_player)
cur_score = cur_score_tuple[0]
if cur_score > max_score:
max_score = cur_score
max_each = each
if max_score == SCORES[provided.PLAYERX]:
return max_score, max_each
return max_score, max_each
elif player == provided.PLAYERO:
min_score = 2;
min_each = (-1,-1)
changed_player = provided.switch_player(player)
for each in empty_list:
cur_board= board.clone()
cur_board.move(each[0], each[1], player)
cur_score_tuple = minimax(cur_board, changed_player)
cur_score = cur_score_tuple[0]
if cur_score < min_score:
min_score = cur_score
min_each = each
if min_score == SCORES[provided.PLAYERO]:
return min_score, min_each
return min_score, min_each

Principle of Computing (Python)学习笔记(7) DFS Search + Tic Tac Toe use MiniMax Stratedy的更多相关文章

  1. Principle of Computing (Python)学习笔记(5) BFS Searching + Zombie Apocalypse

    1 Generators   Generator和list comprehension非常类似 Generators are a kind of iterator that are defined l ...

  2. OpenCV之Python学习笔记

    OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书< ...

  3. python学习笔记整理——字典

    python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...

  4. VS2013中Python学习笔记[Django Web的第一个网页]

    前言 前面我简单介绍了Python的Hello World.看到有人问我搞搞Python的Web,一时兴起,就来试试看. 第一篇 VS2013中Python学习笔记[环境搭建] 简单介绍Python环 ...

  5. python学习笔记之module && package

    个人总结: import module,module就是文件名,导入那个python文件 import package,package就是一个文件夹,导入的文件夹下有一个__init__.py的文件, ...

  6. python学习笔记(六)文件夹遍历,异常处理

    python学习笔记(六) 文件夹遍历 1.递归遍历 import os allfile = [] def dirList(path): filelist = os.listdir(path) for ...

  7. python学习笔记--Django入门四 管理站点--二

    接上一节  python学习笔记--Django入门四 管理站点 设置字段可选 编辑Book模块在email字段上加上blank=True,指定email字段为可选,代码如下: class Autho ...

  8. python学习笔记--Django入门0 安装dangjo

    经过这几天的折腾,经历了Django的各种报错,翻译的内容虽然不错,但是与实际的版本有差别,会出现各种奇葩的错误.现在终于找到了解决方法:查看英文原版内容:http://djangobook.com/ ...

  9. python学习笔记(一)元组,序列,字典

    python学习笔记(一)元组,序列,字典

随机推荐

  1. JAVA 后台SSM框架接收安卓端的json数据

    最近项目上与安卓端做JSON数据交互,使用的SSM框架,刚开始的时候感觉很简单,想着不就是把安卓端的JSON数据封装为Bean类对象吗? 于是就这样写了 可是这样一直报400,百度原因是因为请求url ...

  2. 块级元素行内元素以及display属性

    1.什么叫做标签语义化? ->合理的标签做合适的事情 ->HTML中常用的标签都有哪些? (块状标签和行内标签) ->块状标签和行内标签的区别? (常用的有8条区别) 1)内联元素: ...

  3. C#多线程和线程同步总结

    Thread 没有参数的线程启动 Thread newThread = new Thread(new ThreadStart(DoWork)); newThread.Start(); 有参数的线程启动 ...

  4. WPF 完美截图 <一>

    最近比较懒,一直没继续,此处省略一万字,下面开始正题. 简单介绍下截图的思路: 核心是利用 public CroppedBitmap(BitmapSource source, Int32Rect so ...

  5. c语言的类型、运算符与表达式

    title: 2017-10-17c语言的类型.运算符与表达式 tags: c程序设计语言 grammar_cjkRuby: true --- 1.1 数据类型 char 字符型,一个字节 int 整 ...

  6. MySQL长短密码

    MySQL长短密码 今天批量搭建MySQL环境的时候,遇到长短密码问题,故就此问题总结一下长短密码. 介绍 1.长密码例子: mysql> show grants for 'test'@'loc ...

  7. Python机器学习库和深度学习库总结

    我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目. 1. Scikit-learn(重点推荐) www.github.com/sc ...

  8. 斯坦福大学自然语言处理第一课——引言(Introduction)

    一.课程介绍 斯坦福大学于2012年3月在Coursera启动了在线自然语言处理课程,由NLP领域大牛Dan Jurafsky 和 Chirs Manning教授授课:https://class.co ...

  9. 从实战出发,谈谈 nginx 信号集

    前言 之前工作时候,一台引流测试机器的一个 ngx_lua 服务突然出现了一些 HTTP/500 响应,从错误日志打印的堆栈来看,是不久前新发布的版本里添加的一个 Lua table 不存在,而有代码 ...

  10. 邻里街坊 golang入坑系列

    如果要追新或者怀旧,就点击https://andy-zhangtao.gitbooks.io/golang/content/ . 博客园里面的文章基本和gitbook上面是保持同步的. 这几天看了几集 ...