Description

小Q正在设计一种棋类游戏。在小Q设计的游戏中,棋子可以放在棋盘上的格点中。某些格点之间有连线,棋子只能
在有连线的格点之间移动。整个棋盘上共有V个格点,编号为0,1,2…,V-1,它们是连通的,也就是说棋子从任意格
点出发,总能到达所有的格点。小Q在设计棋盘时,还保证棋子从一个格点移动到另外任一格点的路径是唯一的。
小Q现在想知道,当棋子从格点0出发,移动N步最多能经过多少格点。格点可以重复经过多次,但不重复计数。

Input

第一行包含2个正整数V,N,其中V表示格点总数,N表示移动步数。
接下来V-1行,每行两个数Ai,Bi,表示编号为Ai,Bi的两个格点之间有连线。
V,N≤ 100, 0 ≤Ai,Bi<V 

Output

输出一行一个整数,表示最多经过的格点数量。

Sample Input

5 2
1 0
2 1
3 2
4 3

Sample Output

3
从格点 0 出发移动 2 步。经过 0, 1, 2 这 3 个格点。

HINT

Source

树型DP。。。

设f[i][j]表示从i点出发走j步不走会i点的最多的点数。。

设dp[i][j]表示从i点出发走j步并且回到i的最多的点数。。

f[x][j]可以有三种转移:

1.f[x][j]=dp[x][j-k-1]+dp[y][k]

2.f[x][j]=dp[x][j-k-1]+f[y][k]

3.f[x][j]=dp[y][k]+f[x][j-k-2](这个有点小坑。。。)

然后dp[x][j]就是一种转移

然后直接大力树型背包。。。注意枚举到K,不然会WA。。。

// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=3000;
int head[N],to[N],nxt[N],cnt;
int f[N][N],dp[N][N],n,K,size[N];
void lnk(int x,int y){
to[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;
to[++cnt]=x,nxt[cnt]=head[y],head[y]=cnt;
}
void dfs(int x,int fa){
size[x]=1;dp[x][0]=1;
for(int i=head[x];i;i=nxt[i]){
int y=to[i];if(y==fa) continue;
dfs(y,x);size[x]+=size[y];
for(int j=K;j>=0;j--){
for(int k=0;k<=j;k++){
if(j-k>=1) f[x][j]=max(f[x][j],dp[x][j-k-1]+dp[y][k]);
if(j-k>=1) f[x][j]=max(f[x][j],dp[x][j-k-1]+f[y][k]);
if(j-k>=2) f[x][j]=max(f[x][j],dp[y][k]+f[x][j-k-2]);
if(j-k>=2) dp[x][j]=max(dp[x][j],dp[x][j-k-2]+dp[y][k]);
}
}
}
for(int i=1;i<=K;i++) f[x][i]=max(f[x][i],f[x][i-1]),dp[x][i]=max(dp[x][i],dp[x][i-1]);
}
int main(){
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%d",&n,&K);int x,y;
for(int i=1;i<n;i++) scanf("%d%d",&x,&y),lnk(x+1,y+1);
dfs(1,0);printf("%d\n",max(f[1][K],dp[1][K]));
return 0;
}

  

bzoj 4813: [Cqoi2017]小Q的棋盘的更多相关文章

  1. bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]

    4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...

  2. bzoj 4813: [Cqoi2017]小Q的棋盘【树形dp】

    这么简单的dp我怎么没想到x2 f为从这个点出发后回到这个点最多能走过的点,g为从这个点出发后不回到这个点最多能走过的点,注意g有两种转移:g[u][k]=max(g[u][k],f[u][k-j-1 ...

  3. 【BZOJ】 4813: [Cqoi2017]小Q的棋盘

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4813 暴力转移就好,考虑以某一个点为根的子树分为是否走回来两种情况 ${f_{i,j}}$ ...

  4. BZOJ 1813 [Cqoi2017]小Q的棋盘 ——树形DP

    唔,貌似以前做过这样差不多的题目. 用$f(i,0/1)$表示从某一点出发,只能走子树的情况下回到根.不回到根的最多经过不同的点数. 然后就可以DP辣 #include <map> #in ...

  5. [BZOJ4813][CQOI2017]小Q的棋盘(DP,贪心)

    4813: [Cqoi2017]小Q的棋盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 804  Solved: 441[Submit][Statu ...

  6. BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs

    BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格 ...

  7. 洛谷 P3698 [CQOI2017]小Q的棋盘 解题报告

    P3698 [CQOI2017]小Q的棋盘 题目描述 小 Q 正在设计一种棋类游戏. 在小 Q 设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上 ...

  8. 【BZOJ4813】[CQOI2017]小Q的棋盘(贪心)

    [BZOJ4813][CQOI2017]小Q的棋盘(贪心) 题面 BZOJ 洛谷 题解 果然是老年选手了,这种题都不会做了.... 先想想一个点如果被访问过只有两种情况,第一种是进入了这个点所在的子树 ...

  9. bzoj 4815: [Cqoi2017]小Q的表格 [数论]

    4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...

随机推荐

  1. iOS APP上架被拒重新提交审核教程

    iOS APP审核比较严格,难免会出现被拒绝的情况,需要根据苹果反馈的问题修改后重新打包上传审核! 1.登录itunesconnect.https://itunesconnect.apple.com进 ...

  2. 教我徒弟Android开发入门(一)

    前言: 这个系列的教程是为我徒弟准备的,也适合还不懂java但是想学android开发的小白们~ 本系列是在Android Studio的环境下运行,默认大家的开发环境都是配置好了的 没有配置好的同学 ...

  3. Java编程学习技巧和方法总结

    干货:必须要有反馈,不断调整,多读书,多些笔记. 解释:不练习你以为你能掌握?笑话,只有自己根据一个个小目标不断的敲,运行,给予你反馈,这样才会真的进步. 纸上谈Java,是永远停止在口.   关于笔 ...

  4. Spring Cloud 之 Feign

    新建Spring Boot工程,命名为feign 1.pom.xml添加依赖 <?xml version="1.0" encoding="UTF-8"?& ...

  5. 2016第七届 蓝桥杯 全国总决赛B题(完全平方数) (练习)

    道友给看了一道题目,就记录一下吧 题目: 给你0,1,2,3,4,5,6,7,8,9十个数字,要你选出任意一个或几个组合在一起成为完全平方数,每个数字都必须选且只能选一次,求可能的方案. 比如有其中几 ...

  6. Web 动画帧率(FPS)计算

    我们知道,动画其实是由一帧一帧的图像构成的.有 Web 动画那么就会存在该动画在播放运行时的帧率.而帧率在不同设备不同情况下又是不一样的. 有的时候,一些复杂或者重要动画,我们需要实时监控它们的帧率, ...

  7. JAVA9模块化详解(一)——模块化的定义

    JAVA9模块化详解 前言 java9已经出来有一段时间了,今天向大家介绍一下java9的一个重要特性--模块化.模块化系统的主要目的如下: 更可靠的配置,通过制定明确的类的依赖关系代替以前那种易错的 ...

  8. Linux Rsync备份服务介绍及部署守护进程模式

    rsync介绍 rsync是一款开源的.快速的.多功能的.可实现全量及增量的本地或远程数据同步备份工具 在常驻模式(daemon mode)下,rsync默认监听TCP端口873,以原生rsync传输 ...

  9. C(8)

    C语言位运算与文件 本章引言: 在不知不觉中我们的C高速入门系列已经慢慢地接近尾声了,而在这一节中,我们会对 C语言中的位运算和文件进行解析,相信这两章对于一些人来说是陌生的,由于非常多 老师都会跳过 ...

  10. Android使用gradle不同配置多项目打包

    //build.gradle该配置文件里路径均是相对路径 apply plugin: 'com.android.application' android { def suffix = "su ...