First release of mlrMBO - the toolbox for (Bayesian) Black-Box Optimization
We are happy to finally announce the first release of mlrMBO on cran after a quite long development time. For the theoretical background and a nearly complete overview of mlrMBOs capabilities you can check our paper onmlrMBO that we presubmitted to arxiv.
The key features of mlrMBO are:
- Global optimization of expensive Black-Box functions.
- Mulit-Criteria Optimization.
- Parallelization through multi-point proposals.
- Support for optimization over categorical variables using random forests as a surrogate.
For examples covering different scenarios we have Vignettes that are also available as an online documentation. For mlr users mlrMBO is especially interesting for hyperparameter optimization.
mlrMBO for mlr hyperparameter tuning was already used in an earlier blog post. Nonetheless we want to provide a small toy example to demonstrate the work flow of mlrMBO in this post.
Example
First, we define an objective function that we are going to minimize:
set.seed(1)
library(mlrMBO)
fun = makeSingleObjectiveFunction(
name = "SineMixture",
fn = function(x) sin(x[1])*cos(x[2])/2 + 0.04 * sum(x^2),
par.set = makeNumericParamSet(id = "x", len = 2, lower = -5, upper = 5)
)
To define the objective function we use makeSingleObjectiveFunction
from the neat package smoof, which gives us the benefit amongst others to be able to directly visualize the function. If you happen to be in need of functions to optimize and benchmark your optimization algorithm I recommend you to have a look at the package!
library(plot3D)
plot3D(fun, contour = TRUE, lightning = TRUE)
Let’s start with the configuration of the optimization:
# In this simple example we construct the control object with the defaults:
ctrl = makeMBOControl()
# For this numeric optimization we are going to use the Expected Improvement as infill criterion:
ctrl = setMBOControlInfill(ctrl, crit = crit.ei)
# We will allow for exactly 25 evaluations of the objective function:
ctrl = setMBOControlTermination(ctrl, max.evals = 25L)
The optimization has to so start with an initial design. mlrMBO can automatically create one but here we are going to use a randomly sampled LHS design of our own:
library(ggplot2)
des = generateDesign(n = 8L, par.set = getParamSet(fun), fun = lhs::randomLHS)
autoplot(fun, render.levels = TRUE) + geom_point(data = des)
## Warning: Ignoring unknown aesthetics: fill
The points demonstrate how the initial design already covers the search space but is missing the area of the global minimum. Before we can start the Bayesian optimization we have to set the surrogate learner to Kriging. Therefore we use an mlr regression learner. In fact, with mlrMBO you can use any regression learner integrated inmlr as a surrogate allowing for many special optimization applications.
sur.lrn = makeLearner("regr.km", predict.type = "se", config = list(show.learner.output = FALSE))
Note: mlrMBO can automatically determine a good surrogate learner based on the search space defined for the objective function. For a purely numeric domain it would have chosen Kriging as well with some slight modifications to make it a bit more stable against numerical problems that can occur during optimization.
Finally, we can start the optimization run:
res = mbo(fun = fun, design = des, learner = sur.lrn, control = ctrl, show.info = TRUE)
## Computing y column(s) for design. Not provided.
## [mbo] 0: x=-0.0101,-4.52 : y = 0.817 : 0.0 secs : initdesign
## [mbo] 0: x=-4.52,-2.48 : y = 0.677 : 0.0 secs : initdesign
## [mbo] 0: x=-2.78,-3.27 : y = 0.913 : 0.0 secs : initdesign
## [mbo] 0: x=4.92,1.09 : y = 0.787 : 0.0 secs : initdesign
## [mbo] 0: x=2.77,2.93 : y = 0.469 : 0.0 secs : initdesign
## [mbo] 0: x=0.815,-0.647 : y = 0.333 : 0.0 secs : initdesign
## [mbo] 0: x=-2.34,4.5 : y = 1.11 : 0.0 secs : initdesign
## [mbo] 0: x=1.58,1.87 : y = 0.0939 : 0.0 secs : initdesign
## [mbo] 1: x=1.48,5 : y = 1.23 : 0.0 secs : infill_ei
## [mbo] 2: x=-3.77,2.2 : y = 0.589 : 0.0 secs : infill_ei
## [mbo] 3: x=0.429,1.49 : y = 0.113 : 0.0 secs : infill_ei
## [mbo] 4: x=0.776,1.98 : y = 0.0413 : 0.0 secs : infill_ei
## [mbo] 5: x=0.126,1.93 : y = 0.127 : 0.0 secs : infill_ei
## [mbo] 6: x=1.01,2.15 : y = -0.00662 : 0.0 secs : infill_ei
## [mbo] 7: x=0.963,2.36 : y = -0.0317 : 0.0 secs : infill_ei
## [mbo] 8: x=0.922,0.539 : y = 0.388 : 0.0 secs : infill_ei
## [mbo] 9: x=-2.7,-0.524 : y = 0.119 : 0.0 secs : infill_ei
## [mbo] 10: x=-5,-0.253 : y = 1.47 : 0.0 secs : infill_ei
## [mbo] 11: x=-1.46,-0.613 : y = -0.306 : 0.0 secs : infill_ei
## [mbo] 12: x=-1.39,-1.1 : y = -0.098 : 0.0 secs : infill_ei
## [mbo] 13: x=-1.29,-0.228 : y = -0.4 : 0.0 secs : infill_ei
## [mbo] 14: x=-1.57,0.256 : y = -0.382 : 0.0 secs : infill_ei
## [mbo] 15: x=-1.43,-0.0423 : y = -0.413 : 0.0 secs : infill_ei
## [mbo] 16: x=-1.27,0.0745 : y = -0.412 : 0.0 secs : infill_ei
## [mbo] 17: x=5,-3.84 : y = 1.96 : 0.0 secs : infill_ei
res$x
## $x
## [1] -1.42836803 -0.04234841
res$y
## [1] -0.4128122
We can see that we have found the global optimum of y=−0.414964y=−0.414964 at x=(−1.35265,0)x=(−1.35265,0) quite sufficiently. Let’s have a look at the points mlrMBO evaluated. Therefore we can use the OptPath
which stores all information about all evaluations during the optimization run:
opdf = as.data.frame(res$opt.path)
autoplot(fun, render.levels = TRUE, render.contours = FALSE) + geom_text(data = opdf, aes(label = dob))
It is interesting to see, that for this run the algorithm first went to the local minimum on the top right in the 6th and 7th iteration but later, thanks to the explorative character of the Expected Improvement, found the real global minimum.
Comparison
That is all good, but how do other optimization strategies perform?
Grid Search
Grid search is seldom a good idea. But especially for hyperparameter tuning it is still used. Probably because it kind of gives you the feeling that you know what is going on and have not left out any important area of the search space. In reality the grid is usually so sparse that it leaves important areas untouched as you can see in this example:
grid.des = generateGridDesign(par.set = getParamSet(fun), resolution = 5)
grid.des$y = apply(grid.des, 1, fun)
grid.des[which.min(grid.des$y),]
## x1 x2 y
## 12 -2.5 0 -0.04923607
autoplot(fun, render.levels = TRUE, render.contours = FALSE) + geom_point(data = grid.des)
It is no surprise, that the grid search could not cover the search space well enough and we only reach a bad result.
What about a simple random search?
random.des = generateRandomDesign(par.set = getParamSet(fun), n = 25L)
random.des$y = apply(random.des, 1, fun)
random.des[which.min(random.des$y),]
## x1 x2 y
## 20 -1.784371 -0.9802194 -0.1063019
autoplot(fun, render.levels = TRUE, render.contours = FALSE) + geom_point(data = random.des)
With the random search you could always be lucky but in average the optimum is not reached if smarter optimization strategies work well.
A fair comarison
… for stochastic optimization algorithms can only be achieved by repeating the runs. mlrMBO is stochastic as the initial design is generated randomly and the fit of the Kriging surrogate is also not deterministic. Furthermore we should include other optimization strategies like a genetic algorithm and direct competitors like rBayesOpt
. An extensive benchmark is available in our mlrMBO paper. The examples here are just meant to demonstrate the package.
Engage
If you want to contribute to mlrMBO we ware always open to suggestions and pull requests on github. You are also invited to fork the repository and build and extend your own optimizer based on our toolbox.
转自:https://mlr-org.github.io/First_release_of_mlrMBO_the_toolbox_for_Bayesian_Black_Box_Optimization/
First release of mlrMBO - the toolbox for (Bayesian) Black-Box Optimization的更多相关文章
- matlab toolboxes 大全
MATLAB Toolboxes top (Top) Audio - Astronomy - BiomedicalInformatics - Chemometrics - Chaos - Chemi ...
- plain framework 商业版 开发总结2 项目管理器
任何事情都有三个阶段,分析.制作.质检的过程.在程序中就分为设计.编码.调试(测试)三个阶段,其中设计最为重要,设计的不好会导致编码和调试重复,甚至最后又回到了设计的过程.为了不会重复返工,所以设计的 ...
- 【转】Application.mk 文件语法规范
原文网址:http://blog.sina.com.cn/s/blog_4c451e0e0100s6q4.html Application.mk file syntax specification A ...
- Android NDK开发指南---Application.mk文件和android.mk文件
https://android.googlesource.com/platform/development/+/donut-release/ndk/docs/OVERVIEW.TXT https:// ...
- mysql 源码编绎修改 FLAGS,调试MYSQL
http://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_cmake_c_flags ...
- Windows 10 安装 Docker for Windows
Docker for Windows是Docker社区版(CE)应用程序. Docker for Windows安装包包括在Windows系统上运行Docker所需的一切. 本主题介绍了预安装注意事项 ...
- Docker for Windows 使用 VMware WorkStation
一.前言 Docker for Windows 不同于 Docker Toolbox.Docker for Windows 对系统的要求至少为Windows 10专业版,因为它需要Hyper-V的支持 ...
- [zz] MATLAB工具箱介绍
http://blog.sina.com.cn/s/blog_57235cc701012kfb.html Toolbox工具箱 序号 工具箱 备注 数学.统计与优化 1 Symbolic Ma ...
- Sphinx 2.2.11-release reference manual
1. Introduction 1.1. About 1.2. Sphinx features 1.3. Where to get Sphinx 1.4. License 1.5. Credits 1 ...
随机推荐
- 关于ajax post请求跨域问题的解决心得
最近啊,公司有个项目,需要做一个手机端APP的后台管理系统.所以用到了度文本编辑框,经过了好好一番周折,终于弄好了,带到上线的时候发现啊,只能使用ip去访问网页的时候上能穿图片他不会报跨域的问题,而使 ...
- CHM文件无法打开或无法搜索
在确保CHM文件本身正常的前提下,检查c:\\windows\hh.exe和C:\\windows\system32\itss.dll和hhctrl.ocx三个文件是否存在. 如不存在,只需要从其他机 ...
- JavaEE开发之SpringMVC中的路由配置及参数传递详解
在之前我们使用Swift的Perfect框架来开发服务端程序时,聊到了Perfect中的路由配置.而在SpringMVC中的路由配置与其也是大同小异的.说到路由,其实就是将URL映射到Java的具体类 ...
- Jmeter自动化测试工具的简单使用--HTTP测试
Jmeter自动化测试工具的简单应用 1.安装Jmeter 链接: https://pan.baidu.com/s/1mhSzU68 密码: 446z 到这里下载 1.1 jmeter 将下载好的 ...
- List<String> 和 ArrayList<String>的区别
最近对这两个问题比较懵逼,关于List和ArrayList.List<String> list = new ArrayList<String>(); 好了,先搞明白List 和 ...
- 在spring boot环境中使用fastjson + redis的高速缓存技术
因为项目需求,需要在spring boot环境中使用redis作数据缓存.之前的解决方案是参考的http://wiselyman.iteye.com/blog/2184884,具体使用的是Jackso ...
- JQuery实现通过点击标题切换字体
这个主要通过判断被点击的元素的子元素中是否包含了b元素来进行字体的切换,其中wrapInner函数是为了在$author元素的内部添加b标签. 切换回正常字体是通过将内容转化为纯文本形式,再替换元素内 ...
- 【算法系列学习】[kuangbin带你飞]专题十二 基础DP1 C - Monkey and Banana
https://vjudge.net/contest/68966#problem/C [参考]http://blog.csdn.net/qinmusiyan/article/details/79862 ...
- 1012 u Calculate e
A simple mathematical formula for e iswhere n is allowed to go to infinity. This can actually yield ...
- GitHub的实践
GitHub的实践 2017-05-08,晴,来小米已经一周的时间了,感谢领导能给我一周的时间来熟悉 ubuntu.spring boot.maven.docker.github .大家会问,这些不都 ...