First release of mlrMBO - the toolbox for (Bayesian) Black-Box Optimization
We are happy to finally announce the first release of mlrMBO on cran after a quite long development time. For the theoretical background and a nearly complete overview of mlrMBOs capabilities you can check our paper onmlrMBO that we presubmitted to arxiv.
The key features of mlrMBO are:
- Global optimization of expensive Black-Box functions.
- Mulit-Criteria Optimization.
- Parallelization through multi-point proposals.
- Support for optimization over categorical variables using random forests as a surrogate.
For examples covering different scenarios we have Vignettes that are also available as an online documentation. For mlr users mlrMBO is especially interesting for hyperparameter optimization.
mlrMBO for mlr hyperparameter tuning was already used in an earlier blog post. Nonetheless we want to provide a small toy example to demonstrate the work flow of mlrMBO in this post.
Example
First, we define an objective function that we are going to minimize:
set.seed(1)
library(mlrMBO)
fun = makeSingleObjectiveFunction(
name = "SineMixture",
fn = function(x) sin(x[1])*cos(x[2])/2 + 0.04 * sum(x^2),
par.set = makeNumericParamSet(id = "x", len = 2, lower = -5, upper = 5)
)
To define the objective function we use makeSingleObjectiveFunction from the neat package smoof, which gives us the benefit amongst others to be able to directly visualize the function. If you happen to be in need of functions to optimize and benchmark your optimization algorithm I recommend you to have a look at the package!
library(plot3D)
plot3D(fun, contour = TRUE, lightning = TRUE)
Let’s start with the configuration of the optimization:
# In this simple example we construct the control object with the defaults:
ctrl = makeMBOControl()
# For this numeric optimization we are going to use the Expected Improvement as infill criterion:
ctrl = setMBOControlInfill(ctrl, crit = crit.ei)
# We will allow for exactly 25 evaluations of the objective function:
ctrl = setMBOControlTermination(ctrl, max.evals = 25L)
The optimization has to so start with an initial design. mlrMBO can automatically create one but here we are going to use a randomly sampled LHS design of our own:
library(ggplot2)
des = generateDesign(n = 8L, par.set = getParamSet(fun), fun = lhs::randomLHS)
autoplot(fun, render.levels = TRUE) + geom_point(data = des)
## Warning: Ignoring unknown aesthetics: fill
The points demonstrate how the initial design already covers the search space but is missing the area of the global minimum. Before we can start the Bayesian optimization we have to set the surrogate learner to Kriging. Therefore we use an mlr regression learner. In fact, with mlrMBO you can use any regression learner integrated inmlr as a surrogate allowing for many special optimization applications.
sur.lrn = makeLearner("regr.km", predict.type = "se", config = list(show.learner.output = FALSE))
Note: mlrMBO can automatically determine a good surrogate learner based on the search space defined for the objective function. For a purely numeric domain it would have chosen Kriging as well with some slight modifications to make it a bit more stable against numerical problems that can occur during optimization.
Finally, we can start the optimization run:
res = mbo(fun = fun, design = des, learner = sur.lrn, control = ctrl, show.info = TRUE)
## Computing y column(s) for design. Not provided.
## [mbo] 0: x=-0.0101,-4.52 : y = 0.817 : 0.0 secs : initdesign
## [mbo] 0: x=-4.52,-2.48 : y = 0.677 : 0.0 secs : initdesign
## [mbo] 0: x=-2.78,-3.27 : y = 0.913 : 0.0 secs : initdesign
## [mbo] 0: x=4.92,1.09 : y = 0.787 : 0.0 secs : initdesign
## [mbo] 0: x=2.77,2.93 : y = 0.469 : 0.0 secs : initdesign
## [mbo] 0: x=0.815,-0.647 : y = 0.333 : 0.0 secs : initdesign
## [mbo] 0: x=-2.34,4.5 : y = 1.11 : 0.0 secs : initdesign
## [mbo] 0: x=1.58,1.87 : y = 0.0939 : 0.0 secs : initdesign
## [mbo] 1: x=1.48,5 : y = 1.23 : 0.0 secs : infill_ei
## [mbo] 2: x=-3.77,2.2 : y = 0.589 : 0.0 secs : infill_ei
## [mbo] 3: x=0.429,1.49 : y = 0.113 : 0.0 secs : infill_ei
## [mbo] 4: x=0.776,1.98 : y = 0.0413 : 0.0 secs : infill_ei
## [mbo] 5: x=0.126,1.93 : y = 0.127 : 0.0 secs : infill_ei
## [mbo] 6: x=1.01,2.15 : y = -0.00662 : 0.0 secs : infill_ei
## [mbo] 7: x=0.963,2.36 : y = -0.0317 : 0.0 secs : infill_ei
## [mbo] 8: x=0.922,0.539 : y = 0.388 : 0.0 secs : infill_ei
## [mbo] 9: x=-2.7,-0.524 : y = 0.119 : 0.0 secs : infill_ei
## [mbo] 10: x=-5,-0.253 : y = 1.47 : 0.0 secs : infill_ei
## [mbo] 11: x=-1.46,-0.613 : y = -0.306 : 0.0 secs : infill_ei
## [mbo] 12: x=-1.39,-1.1 : y = -0.098 : 0.0 secs : infill_ei
## [mbo] 13: x=-1.29,-0.228 : y = -0.4 : 0.0 secs : infill_ei
## [mbo] 14: x=-1.57,0.256 : y = -0.382 : 0.0 secs : infill_ei
## [mbo] 15: x=-1.43,-0.0423 : y = -0.413 : 0.0 secs : infill_ei
## [mbo] 16: x=-1.27,0.0745 : y = -0.412 : 0.0 secs : infill_ei
## [mbo] 17: x=5,-3.84 : y = 1.96 : 0.0 secs : infill_ei
res$x
## $x
## [1] -1.42836803 -0.04234841
res$y
## [1] -0.4128122
We can see that we have found the global optimum of y=−0.414964y=−0.414964 at x=(−1.35265,0)x=(−1.35265,0) quite sufficiently. Let’s have a look at the points mlrMBO evaluated. Therefore we can use the OptPath which stores all information about all evaluations during the optimization run:
opdf = as.data.frame(res$opt.path)
autoplot(fun, render.levels = TRUE, render.contours = FALSE) + geom_text(data = opdf, aes(label = dob))
It is interesting to see, that for this run the algorithm first went to the local minimum on the top right in the 6th and 7th iteration but later, thanks to the explorative character of the Expected Improvement, found the real global minimum.
Comparison
That is all good, but how do other optimization strategies perform?
Grid Search
Grid search is seldom a good idea. But especially for hyperparameter tuning it is still used. Probably because it kind of gives you the feeling that you know what is going on and have not left out any important area of the search space. In reality the grid is usually so sparse that it leaves important areas untouched as you can see in this example:
grid.des = generateGridDesign(par.set = getParamSet(fun), resolution = 5)
grid.des$y = apply(grid.des, 1, fun)
grid.des[which.min(grid.des$y),]
## x1 x2 y
## 12 -2.5 0 -0.04923607
autoplot(fun, render.levels = TRUE, render.contours = FALSE) + geom_point(data = grid.des)
It is no surprise, that the grid search could not cover the search space well enough and we only reach a bad result.
What about a simple random search?
random.des = generateRandomDesign(par.set = getParamSet(fun), n = 25L)
random.des$y = apply(random.des, 1, fun)
random.des[which.min(random.des$y),]
## x1 x2 y
## 20 -1.784371 -0.9802194 -0.1063019
autoplot(fun, render.levels = TRUE, render.contours = FALSE) + geom_point(data = random.des)
With the random search you could always be lucky but in average the optimum is not reached if smarter optimization strategies work well.
A fair comarison
… for stochastic optimization algorithms can only be achieved by repeating the runs. mlrMBO is stochastic as the initial design is generated randomly and the fit of the Kriging surrogate is also not deterministic. Furthermore we should include other optimization strategies like a genetic algorithm and direct competitors like rBayesOpt. An extensive benchmark is available in our mlrMBO paper. The examples here are just meant to demonstrate the package.
Engage
If you want to contribute to mlrMBO we ware always open to suggestions and pull requests on github. You are also invited to fork the repository and build and extend your own optimizer based on our toolbox.
转自:https://mlr-org.github.io/First_release_of_mlrMBO_the_toolbox_for_Bayesian_Black_Box_Optimization/
First release of mlrMBO - the toolbox for (Bayesian) Black-Box Optimization的更多相关文章
- matlab toolboxes 大全
MATLAB Toolboxes top (Top) Audio - Astronomy - BiomedicalInformatics - Chemometrics - Chaos - Chemi ...
- plain framework 商业版 开发总结2 项目管理器
任何事情都有三个阶段,分析.制作.质检的过程.在程序中就分为设计.编码.调试(测试)三个阶段,其中设计最为重要,设计的不好会导致编码和调试重复,甚至最后又回到了设计的过程.为了不会重复返工,所以设计的 ...
- 【转】Application.mk 文件语法规范
原文网址:http://blog.sina.com.cn/s/blog_4c451e0e0100s6q4.html Application.mk file syntax specification A ...
- Android NDK开发指南---Application.mk文件和android.mk文件
https://android.googlesource.com/platform/development/+/donut-release/ndk/docs/OVERVIEW.TXT https:// ...
- mysql 源码编绎修改 FLAGS,调试MYSQL
http://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_cmake_c_flags ...
- Windows 10 安装 Docker for Windows
Docker for Windows是Docker社区版(CE)应用程序. Docker for Windows安装包包括在Windows系统上运行Docker所需的一切. 本主题介绍了预安装注意事项 ...
- Docker for Windows 使用 VMware WorkStation
一.前言 Docker for Windows 不同于 Docker Toolbox.Docker for Windows 对系统的要求至少为Windows 10专业版,因为它需要Hyper-V的支持 ...
- [zz] MATLAB工具箱介绍
http://blog.sina.com.cn/s/blog_57235cc701012kfb.html Toolbox工具箱 序号 工具箱 备注 数学.统计与优化 1 Symbolic Ma ...
- Sphinx 2.2.11-release reference manual
1. Introduction 1.1. About 1.2. Sphinx features 1.3. Where to get Sphinx 1.4. License 1.5. Credits 1 ...
随机推荐
- 空a标签 a标签空的情况下 IE6 IE7下点击无效
最近做了好多网站专题页面,因为专题页面图片较多,个别banner上有1个到多个按钮,一种是用“图解img标签的usemap”的方法做链接,(图解img标签的usemap使用方法)[传送门] 另一种用则 ...
- xmlplus 组件设计系列之一 - 图标
网页上使用的图标分可为三种:文件图标.字体图标和 SVG 图标.对于文件图标,下面仅以 PNG 格式来说明. PNG 图标 对于 PNG 图标的引用,有两种方式.一种是直接由 HTML 元素 img ...
- java获得路径的多种方式
本文讲解java语言中获得运行时路径的多种方式,包括java项目.java web项目.jar.weblogic等多种场景. 一.this.getClass().getClassLoader().ge ...
- 进程间通信系列 之 socket套接字实例
进程间通信系列 之 概述与对比 http://blog.csdn.net/younger_china/article/details/15808685 进程间通信系列 之 共享内存及其实例 ...
- 进程间通信系列 之 消息队列函数(msgget、msgctl、msgsnd、msgrcv)及其范例
进程间通信系列 之 概述与对比 http://blog.csdn.net/younger_china/article/details/15808685 进程间通信系列 之 共享内存及其实例 ...
- shell中的Mysql查询
1 #!/bin/bash 2 #查询 3 echo -e 4 for i in `cat id.txt` 5 do 6 A=`mysql -h10 -uw -p2012 -Ne "sel ...
- PHP 学习笔记(4)
声明类属性或方法为静态,就可以不实例化类而直接访问.静态属性不能通过一个类已实例化的对象来访问(但静态方法可以). PHP 5 支持抽象类和抽象方法.定义为抽象的类不能被实例化 使用接口(interf ...
- WebStorm 2017 最新版激活方式
注册时,在打开的License Activation窗口中选择“License server”,在输入框输入下面的网址:http://idea.iteblog.com/key.php 原文:https ...
- Codeforces Round #410 (Div. 2)C题
C. Mike and gcd problem time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- unity还原three导出的json——基本模型,位移,旋转,缩放
GameObject.CreatePrimitive(PrimitiveType.Cube); GameObject.CreatePrimitive(PrimitiveType.Plane); Gam ...