We are happy to finally announce the first release of mlrMBO on cran after a quite long development time. For the theoretical background and a nearly complete overview of mlrMBOs capabilities you can check our paper onmlrMBO that we presubmitted to arxiv.

The key features of mlrMBO are:

  • Global optimization of expensive Black-Box functions.
  • Mulit-Criteria Optimization.
  • Parallelization through multi-point proposals.
  • Support for optimization over categorical variables using random forests as a surrogate.

For examples covering different scenarios we have Vignettes that are also available as an online documentation. For mlr users mlrMBO is especially interesting for hyperparameter optimization.

mlrMBO for mlr hyperparameter tuning was already used in an earlier blog post. Nonetheless we want to provide a small toy example to demonstrate the work flow of mlrMBO in this post.

Example

First, we define an objective function that we are going to minimize:

set.seed(1)
library(mlrMBO)
fun = makeSingleObjectiveFunction(
name = "SineMixture",
fn = function(x) sin(x[1])*cos(x[2])/2 + 0.04 * sum(x^2),
par.set = makeNumericParamSet(id = "x", len = 2, lower = -5, upper = 5)
)

To define the objective function we use makeSingleObjectiveFunction from the neat package smoof, which gives us the benefit amongst others to be able to directly visualize the function. If you happen to be in need of functions to optimize and benchmark your optimization algorithm I recommend you to have a look at the package!

library(plot3D)
plot3D(fun, contour = TRUE, lightning = TRUE)

Let’s start with the configuration of the optimization:

# In this simple example we construct the control object with the defaults:
ctrl = makeMBOControl()
# For this numeric optimization we are going to use the Expected Improvement as infill criterion:
ctrl = setMBOControlInfill(ctrl, crit = crit.ei)
# We will allow for exactly 25 evaluations of the objective function:
ctrl = setMBOControlTermination(ctrl, max.evals = 25L)

The optimization has to so start with an initial design. mlrMBO can automatically create one but here we are going to use a randomly sampled LHS design of our own:

library(ggplot2)
des = generateDesign(n = 8L, par.set = getParamSet(fun), fun = lhs::randomLHS)
autoplot(fun, render.levels = TRUE) + geom_point(data = des)
## Warning: Ignoring unknown aesthetics: fill

The points demonstrate how the initial design already covers the search space but is missing the area of the global minimum. Before we can start the Bayesian optimization we have to set the surrogate learner to Kriging. Therefore we use an mlr regression learner. In fact, with mlrMBO you can use any regression learner integrated inmlr as a surrogate allowing for many special optimization applications.

sur.lrn = makeLearner("regr.km", predict.type = "se", config = list(show.learner.output = FALSE))

Note: mlrMBO can automatically determine a good surrogate learner based on the search space defined for the objective function. For a purely numeric domain it would have chosen Kriging as well with some slight modifications to make it a bit more stable against numerical problems that can occur during optimization.

Finally, we can start the optimization run:

res = mbo(fun = fun, design = des, learner = sur.lrn, control = ctrl, show.info = TRUE)
## Computing y column(s) for design. Not provided.
## [mbo] 0: x=-0.0101,-4.52 : y = 0.817 : 0.0 secs : initdesign
## [mbo] 0: x=-4.52,-2.48 : y = 0.677 : 0.0 secs : initdesign
## [mbo] 0: x=-2.78,-3.27 : y = 0.913 : 0.0 secs : initdesign
## [mbo] 0: x=4.92,1.09 : y = 0.787 : 0.0 secs : initdesign
## [mbo] 0: x=2.77,2.93 : y = 0.469 : 0.0 secs : initdesign
## [mbo] 0: x=0.815,-0.647 : y = 0.333 : 0.0 secs : initdesign
## [mbo] 0: x=-2.34,4.5 : y = 1.11 : 0.0 secs : initdesign
## [mbo] 0: x=1.58,1.87 : y = 0.0939 : 0.0 secs : initdesign
## [mbo] 1: x=1.48,5 : y = 1.23 : 0.0 secs : infill_ei
## [mbo] 2: x=-3.77,2.2 : y = 0.589 : 0.0 secs : infill_ei
## [mbo] 3: x=0.429,1.49 : y = 0.113 : 0.0 secs : infill_ei
## [mbo] 4: x=0.776,1.98 : y = 0.0413 : 0.0 secs : infill_ei
## [mbo] 5: x=0.126,1.93 : y = 0.127 : 0.0 secs : infill_ei
## [mbo] 6: x=1.01,2.15 : y = -0.00662 : 0.0 secs : infill_ei
## [mbo] 7: x=0.963,2.36 : y = -0.0317 : 0.0 secs : infill_ei
## [mbo] 8: x=0.922,0.539 : y = 0.388 : 0.0 secs : infill_ei
## [mbo] 9: x=-2.7,-0.524 : y = 0.119 : 0.0 secs : infill_ei
## [mbo] 10: x=-5,-0.253 : y = 1.47 : 0.0 secs : infill_ei
## [mbo] 11: x=-1.46,-0.613 : y = -0.306 : 0.0 secs : infill_ei
## [mbo] 12: x=-1.39,-1.1 : y = -0.098 : 0.0 secs : infill_ei
## [mbo] 13: x=-1.29,-0.228 : y = -0.4 : 0.0 secs : infill_ei
## [mbo] 14: x=-1.57,0.256 : y = -0.382 : 0.0 secs : infill_ei
## [mbo] 15: x=-1.43,-0.0423 : y = -0.413 : 0.0 secs : infill_ei
## [mbo] 16: x=-1.27,0.0745 : y = -0.412 : 0.0 secs : infill_ei
## [mbo] 17: x=5,-3.84 : y = 1.96 : 0.0 secs : infill_ei
res$x
## $x
## [1] -1.42836803 -0.04234841
res$y
## [1] -0.4128122

We can see that we have found the global optimum of y=−0.414964y=−0.414964 at x=(−1.35265,0)x=(−1.35265,0) quite sufficiently. Let’s have a look at the points mlrMBO evaluated. Therefore we can use the OptPath which stores all information about all evaluations during the optimization run:

opdf = as.data.frame(res$opt.path)
autoplot(fun, render.levels = TRUE, render.contours = FALSE) + geom_text(data = opdf, aes(label = dob))

It is interesting to see, that for this run the algorithm first went to the local minimum on the top right in the 6th and 7th iteration but later, thanks to the explorative character of the Expected Improvement, found the real global minimum.

Comparison

That is all good, but how do other optimization strategies perform?

Grid Search

Grid search is seldom a good idea. But especially for hyperparameter tuning it is still used. Probably because it kind of gives you the feeling that you know what is going on and have not left out any important area of the search space. In reality the grid is usually so sparse that it leaves important areas untouched as you can see in this example:

grid.des = generateGridDesign(par.set = getParamSet(fun), resolution = 5)
grid.des$y = apply(grid.des, 1, fun)
grid.des[which.min(grid.des$y),]
##      x1 x2           y
## 12 -2.5 0 -0.04923607
autoplot(fun, render.levels = TRUE, render.contours = FALSE) + geom_point(data = grid.des)

It is no surprise, that the grid search could not cover the search space well enough and we only reach a bad result.

What about a simple random search?

random.des = generateRandomDesign(par.set = getParamSet(fun), n = 25L)
random.des$y = apply(random.des, 1, fun)
random.des[which.min(random.des$y),]
##           x1         x2          y
## 20 -1.784371 -0.9802194 -0.1063019
autoplot(fun, render.levels = TRUE, render.contours = FALSE) + geom_point(data = random.des)

With the random search you could always be lucky but in average the optimum is not reached if smarter optimization strategies work well.

A fair comarison

… for stochastic optimization algorithms can only be achieved by repeating the runs. mlrMBO is stochastic as the initial design is generated randomly and the fit of the Kriging surrogate is also not deterministic. Furthermore we should include other optimization strategies like a genetic algorithm and direct competitors like rBayesOpt. An extensive benchmark is available in our mlrMBO paper. The examples here are just meant to demonstrate the package.

Engage

If you want to contribute to mlrMBO we ware always open to suggestions and pull requests on github. You are also invited to fork the repository and build and extend your own optimizer based on our toolbox.

转自:https://mlr-org.github.io/First_release_of_mlrMBO_the_toolbox_for_Bayesian_Black_Box_Optimization/

First release of mlrMBO - the toolbox for (Bayesian) Black-Box Optimization的更多相关文章

  1. matlab toolboxes 大全

    MATLAB Toolboxes top (Top) Audio - Astronomy - BiomedicalInformatics - Chemometrics  - Chaos - Chemi ...

  2. plain framework 商业版 开发总结2 项目管理器

    任何事情都有三个阶段,分析.制作.质检的过程.在程序中就分为设计.编码.调试(测试)三个阶段,其中设计最为重要,设计的不好会导致编码和调试重复,甚至最后又回到了设计的过程.为了不会重复返工,所以设计的 ...

  3. 【转】Application.mk 文件语法规范

    原文网址:http://blog.sina.com.cn/s/blog_4c451e0e0100s6q4.html Application.mk file syntax specification A ...

  4. Android NDK开发指南---Application.mk文件和android.mk文件

    https://android.googlesource.com/platform/development/+/donut-release/ndk/docs/OVERVIEW.TXT https:// ...

  5. mysql 源码编绎修改 FLAGS,调试MYSQL

    http://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_cmake_c_flags ...

  6. Windows 10 安装 Docker for Windows

    Docker for Windows是Docker社区版(CE)应用程序. Docker for Windows安装包包括在Windows系统上运行Docker所需的一切. 本主题介绍了预安装注意事项 ...

  7. Docker for Windows 使用 VMware WorkStation

    一.前言 Docker for Windows 不同于 Docker Toolbox.Docker for Windows 对系统的要求至少为Windows 10专业版,因为它需要Hyper-V的支持 ...

  8. [zz] MATLAB工具箱介绍

    http://blog.sina.com.cn/s/blog_57235cc701012kfb.html Toolbox工具箱 序号 工具箱 备注   数学.统计与优化   1 Symbolic Ma ...

  9. Sphinx 2.2.11-release reference manual

    1. Introduction 1.1. About 1.2. Sphinx features 1.3. Where to get Sphinx 1.4. License 1.5. Credits 1 ...

随机推荐

  1. 1113: 零起点学算法20——输出特殊值II

    1113: 零起点学算法20--输出特殊值II Time Limit: 1 Sec  Memory Limit: 64 MB   64bit IO Format: %lldSubmitted: 207 ...

  2. WPF集合控件实现分隔符(ItemsControl Splitter)

    在WPF的集合控件中常常需要在每一个集合项之间插入一个分隔符样式,但是WPF的ItemsControl没有相关功能的直接实现,所以只能考虑曲线救国,经过研究,大概想到了以下两种实现方式. 先写出Ite ...

  3. Apache设置404页面

    使用版本:Apache 2.2 1.添加404页面 在所配置网站的根目录添加编辑好的 404.html (页面名字无所谓 比如也可以叫missing.html) 如C:\Program Files\A ...

  4. FreeBSD上构架Nginx服务器

    这篇文章主要记录作者如何在FreeBSD上构架Nginx服务器.作者采用下载该程序的一个源代码包手动编译的方法,而不是使用包管理工具.这样做有两个原因:首先包质量不能保证,或无效或版本旧:其次需要在编 ...

  5. 使用gulp编译sass

    之前写了一篇在ruby环境下如何编译sass的文章:<css预处理器sass使用教程(多图预警)>,随着现在前端构建工具的兴起,也学着使用这些工具来编译sass.webpack存在一个CS ...

  6. Mac 搭建svn本地服务端

    首先建立一个svn目录,位置可以随意,以桌面为例 $ mkdir ~/Desktop/svn 新建一个名为proj的目录作为一个repository $ cd ~/Desktop/svn $ mkdi ...

  7. 一个例子简要说明include和require的区别

    先编辑command.php文件 echo 'hello'.PHP_EOL; 然后编辑console.php文件 for($i=1;$i<=3;++$i){ require 'command1. ...

  8. react 各种UI框架

    共计bfd-ui,react-amaze-ui,react-ant-design,react-material-ui,react-components,react-desktop,react-ui,s ...

  9. python自动化测试应用-番外篇--接口测试2

    篇2                 book-python-auto-test-番外篇--接口测试2 --lamecho辣么丑 大家好! 我是lamecho(辣么丑),今天将继续上一篇python接 ...

  10. 使用webpack打包css和js

    1.安装webpack. npm install webpack -g 2.创建一个文件夹app. 3.新建文件test.js. require("!style-loader!css-loa ...