python/numpy/tensorflow中,对矩阵行列操作,下标是怎么回事儿?
Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor。
用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量,向量和张量。
从python内存角度理解,就是一个数值,长度为1,并且不是一个序列;
从numpy与tensorflow数学角度理解,就是一个标量,shape为(),其轴为0;
[1,2,3,4,5,6]
从python内存角度理解,就是1*6或者长度为6的一个序列;
从numpy与tensorflow数学角度理解,就是一维向量,并且是列向量,shape为(6,),其轴为1;注:一维向量,列向量,其轴为1,轴下标为0,表示第一个轴;
[[1,2,3], [4,5,6]]
从python内存角度理解,就是一个二维数组2*3,2列3行;注意:不管python还是numpy/tensorflow都是列在前,即一个向量默认为列向量;
从numpy/tensorflow数学角度理解,就是一个二维张量,shape为(2,3),其轴为2;注:二维向量,第一个轴为列,下标为0,第二个轴为行,下标为1;
例子:
import os, sys
import numpy
import tensorflow as tf
a = [[1,2,3],[4,5,6]]
b = tf.Variable(a, dtype=tf.float32)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
d1 = tf.reduce_mean(b)
d2 = tf.reduce_mean(b, 0)
d3 = tf.reduce_mean(b, 1)
sess.run([b, b[0,:], b[:, 0]])
# [array([[ 1., 2., 3.],
# [ 4., 5., 6.]], dtype=float32),
# array([ 1., 2., 3.], dtype=float32),
# array([ 1., 4.], dtype=float32)]
sess.run([d1, d2, d3])
# [3.5,
# array([ 2.5, 3.5, 4.5], dtype=float32),
# array([ 2., 5.], dtype=float32)]
注:
[b, b[i,:], b[:, i]]
b[i,:]: 表示b矩阵第一个轴(列),第i列对应所有元素;
b[:,i]: 表示b矩阵第二个轴(行),第i行对应所有元素;
d1=tf.reduce_mean(b): 表示对矩阵所有元素进行均值;
d2=tf.reduce_mean(b, 0):表示对矩阵进行第一个轴(列)方向上的投影,即每一行上的均值;
d3=tf.reduce_mean(b, 1):表示对矩阵进行第二个轴(行)方向上的投影,即每一列的均值;
查看这个网址:http://www.cnblogs.com/silence-tommy/p/6554986.html
这个网址上说的有问题:
tf.reduce_mean(x) ==> 2.5 #如果不指定第二个参数,那么就在所有的元素中取平均值
tf.reduce_mean(x, 0) ==> [2., 3.] #指定第二个参数为0,则第一维的元素取平均值,即每一列求平均值
tf.reduce_mean(x, 1) ==> [1.5, 3.5] #指定第二个参数为1,则第二维的元素取平均值,即每一行求平均值
这两句下划线的标注,是错误的。显然没有理解对于矩阵轴的概念;
(不好意思,这个网址博主,仅仅是看到了,所以仅仅从开发角度分析了下,并非故意,敬请谅解!)
python/numpy/tensorflow中,对矩阵行列操作,下标是怎么回事儿?的更多相关文章
- Python numpy tensorflow 中的 点乘 和 矩阵乘法
1)点乘(即“ * ”) ---- 各个矩阵对应元素做乘法 若 w 为 m*1 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵. 若 w 为 m*n 的矩阵,x 为 m ...
- tensorflow中一个矩阵和一个向量相加
import tensorflow as tf x=tf.constant([[1,2],[3,4]]) y=tf.constant([[1],[1]])#列向量 z=tf.constant([1,1 ...
- python numpy初始化一个图像矩阵
mask_all = np.zeros((256, 256), dtype='uint8') 单通道 mask_all_enlarge = np.zeros((256, 256, 3), dtype ...
- python numpy 数组中元素大于等于0的元素
>>> import numpy as np >>> a = np.random.randint(-5, 5, (5, 5)) >>> a arr ...
- python numpy数组中的复制问题
vector = numpy.array([5, 10, 15, 20]) equal_to_ten_or_five = (vector == 10) | (vector == 5) vector[e ...
- Octave中的矩阵常用操作2
sum(a):矩阵里的数据求和prod(a):乘积floor(a):向上取整ceil(a):向下取整max(A,[],1):取每一列的最大值max(A,[],2):取每一行的最大值max(max(A) ...
- Python查找列表中某个元素返回所有下标
需求 找出list中某一元素并返回所有匹配index值 问题 使用index()只能返回一个下标 >>> cw=[0,1,2,1,1,0,1,0,0,1] >>> ...
- Tensorflow中的padding操作
转载请注明出处:http://www.cnblogs.com/willnote/p/6746668.html 图示说明 用一个3x3的网格在一个28x28的图像上做切片并移动 移动到边缘上的时候,如果 ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
随机推荐
- ST40 自制 JTAG 适配器
// 文章首发于 https://zhuanlan.zhihu.com/p/28762429 // 但是不知道为什么搜索引擎还没有收录,便在博客再次发布. 0. 引言 意法半导体生产的 SH4 架构的 ...
- jfinal编码问题及解决
使用jfinal出现了常见的编码问题情况 public void test() { Random r = new Random(); try { Connection conn = createCon ...
- .NET接入接口/请求服务器
之前只调用过自己写的接口,这个是调用外部接口 一.创建方法链接接口 , string method = "Get", string token = null) { if (stri ...
- NOR和NAND
NOR和NAND NOR和NAND是现在市场上两种主要的非易失闪存技术.Intel于1988年首先开发出NOR flash技术,彻底改变了原先由EPROM和EEPROM一统天下的局面.紧接着,198? ...
- LeetCode 259. 3Sum Smaller (三数之和较小值) $
Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 < ...
- JSON.stringify实战用法
1.首先定义一个数组 var teamPlanMinList = new Array(); 2. 定义一个json对象 var json = { "plname":plname, ...
- iOS动画学习 -隐式动画
事务 Core Animation基于一个假设,说屏幕上的任何东西都可以(或者可能)做动画.你并不需要在Core Animation中手动打开动画,但是你需要明确地关闭它,否则它会一直存在. 当你改变 ...
- TIDB技术文档翻译
http://blog.csdn.net/antony9118/article/details/60470115
- TIDB 参数解释
地址:https://github.com/pingcap/docs-cn/blob/master/op-guide/configuration.md#tidb TiDB --store 用来指定 T ...
- 利用VS2008发布一个简单的webservice
一个开发好的webservice,怎样发布出去,供其他电脑访问呢? 本文将介绍如何发布一个简单的webservice,其中的内容都是在网上查看别人文章,自己仿照着做了一遍,因此,难免会发生错误,如果发 ...