正题

题目链接:https://www.luogu.com.cn/problem/CF917D


题目大意



给出\(n\)个点的一棵树,对于每个\(k\)求有多少个\(n\)个点的树满足与给出的树恰好有\(k\)条边重合。


解题思路

矩阵树有一个统计所有树边权和的和用法,就是把变量变成一个形如\(wx+1\)的多项式,这样一次项系数的值就表示了固定选择一条边的\(w\)时其他边的方案数之和。

这题我们可以同理,对于在给出数上的边是\(x\),而其他就是\(1\)。那么最后询问\(x^k\)的系数就是答案了。

如果暴力套\(\text{NTT}\)不仅麻烦,而且跑的很慢过不了本题,考虑另一种求系数的方法。

我们假设答案是一个形如\(F(x)=\sum_{i=0}^{n-1}a_ix^i\)的\(n\)次项式,那么我们如果把\(n\)个\(x\)的值直接带入求出\(F\),然后用待定系数法的话我们就可以列出\(n\)个方程从而解出这个\(n\)项式的每一个系数。

时间复杂度\(O(n^4)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=110,P=1e9+7;
ll n,x[N],y[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
namespace Guass{
ll a[N][N],b[N];
void solve(){
for(ll i=1;i<=n;i++){
ll z=i;
for(ll j=i;j<=n;j++)
if(a[j][i]){z=j;break;}
swap(a[i],a[z]);swap(b[i],b[z]);
ll inv=power(a[i][i],P-2);
for(ll j=i;j<=n;j++)
a[i][j]=a[i][j]*inv%P;
b[i]=b[i]*inv%P;
for(ll j=i+1;j<=n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<=n;k++)
(a[j][k]+=rate*a[i][k]%P)%=P;
(b[j]+=rate*b[i]%P)%=P;
}
}
for(ll i=n;i>=1;i--){
for(ll j=i+1;j<=n;j++)
(b[i]+=P-b[j]*a[i][j]%P)%=P;
}
return;
}
}
namespace Matrix{
ll a[N][N];
ll det(){
ll f=1,ans=1;
for(ll i=1;i<n;i++){
ll z=i;
for(ll j=i;j<n;j++)
if(a[j][i]){
if(j!=i)f=-f;
z=j; break;
}
swap(a[i],a[z]);
ll inv=power(a[i][i],P-2);
ans=ans*a[i][i]%P;
for(ll j=i;j<n;j++)
a[i][j]=a[i][j]*inv%P;
for(ll j=i+1;j<n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<n;k++)
(a[j][k]+=rate*a[i][k]%P)%=P;
}
}
return ans*f;
}
void solve(ll w){
for(ll i=1;i<=n;i++)
for(ll j=1;j<=n;j++)
a[i][j]=P-1;
for(ll i=1;i<=n;i++)a[i][i]=n-1;
for(ll i=1;i<n;i++){
a[x[i]][x[i]]+=w-1;
a[y[i]][y[i]]+=w-1;
a[x[i]][y[i]]=P-w;
a[y[i]][x[i]]=P-w;
}
Guass::b[w]=det();
for(ll i=1,p=1;i<=n;i++,p=p*w%P)
Guass::a[w][i]=p;
return;
}
}
signed main(){
scanf("%lld",&n);
for(ll i=1;i<n;i++)
scanf("%lld%lld",&x[i],&y[i]);
for(ll i=1;i<=n;i++)Matrix::solve(i);
Guass::solve();
for(ll i=1;i<=n;i++)
printf("%lld ",Guass::b[i]);
return 0;
}

CF917D-Stranger Trees【矩阵树定理,高斯消元】的更多相关文章

  1. [CF917D]Stranger Trees[矩阵树定理+解线性方程组]

    题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...

  2. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  3. BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】

    题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...

  4. P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元

    传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include ...

  5. 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)

    qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...

  6. Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元

    给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...

  7. 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元

    题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...

  8. SP104 Highways (矩阵树,高斯消元)

    矩阵树定理裸题 //#include <iostream> #include <cstdio> #include <cstring> #include <al ...

  9. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

随机推荐

  1. 基础篇:一文讲懂树莓派命令行文本编辑工具Vim的使用

    简介 众所周知,在Linux系统下的命令行调试界面,经常会遇到需要文本编辑的情况,而树莓派官方系统默认自带了Nano编辑器,Nano的操作门槛更低,但却不如Vim编辑器方便.Vim编辑器是由早期在Li ...

  2. C#中的集合类

    集合相当于容器,用于将一系列相似的项组合在一起. 集合可以分为泛型集合类和非泛型集合类. 多数集合类都是派生自ICollection.IComparer.IEnumerable.IList.IDict ...

  3. 【maven】入门教程

    一:Maven简介 1.Maven是什么? 是一个跨平台的项目管理工具.使用java语言开发(Maven 3.3+ require JDK 1.7 or above to execute)2. 为什么 ...

  4. 【linux】vim常用命令

    转自:https://www.runoob.com/linux/linux-vim.html vi/vim 的使用 基本上 vi/vim 共分为三种模式,分别是命令模式(Command mode),输 ...

  5. Ztree 树插件 树节点名称太长的解决方案

    样式允许的情况下 给背景div加滚动条.. 或者使用省略号方法:使用addDiyDom   http://blog.csdn.net/zhengbo0/article/details/17759543 ...

  6. Flink与Strom两个框架的对比分析

    一.Flink与Storm两个框架的对比 二.Flink 的特性 1.高吞吐.低延迟.高性能 2.支持带事件的窗口(window) 操作:time.count.session.data-driven ...

  7. HCNP Routing&Switching之OSPF虚连接

    前文我们了解了OSPF的网络类型.帧中继交换机映射以及路由器帧中继映射相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15195762.html:今天我 ...

  8. java对象的引用级别

    解释 在java中也有引用的概念,其实就可以认为是变量.标题中的引用级别是指变量与对象之前的引用级别.java中分为4种,按引用强弱关系排序分别是:强引用.软引用.弱引用.虚引用. 强引用(Stron ...

  9. Python之win32模块

    如果想在Windows操作系统上使用Python去做一些自动化工作,pywin32模块常常会被用到,它方便了我们调用Windows API. 安装及使用 通过命令pip install pywin32 ...

  10. 关于 antd tree 组件的推拽操作

    最近项目中使用到 tree 组件的推拽操作, 按常理来说应该主要用到其中的 onDrop 事件,但其中的参数又没有详细的说明,只是在官网给了个例子,网上搜索后又没有发现到位的总结. 因此经过N次的测试 ...