python有关于图像的深度和通道
1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 def create_image():
7 img = np.zeros([400, 400, 3], np.uint8)#zeros:double类零矩阵 创建400*400 3个通道的矩阵图像 参数时classname为uint8
8 img[:, :, 0] = np.ones([400, 400])*255#ones([400, 400])是创建一个400*400的全1矩阵,*255即是全255矩阵 并将这个矩阵的值赋给img的第一维
9 img[:, :, 1] = np.ones([400, 400])*255#第二维全是255
10 img[:, :, 2] = np.ones([400, 400])*255#第三维全是255
11 cv.imshow("自制图片", img)#输出一张400*400的白色图片(255 255 255):蓝(B)、绿(G)、红(R)
12
13 create_image()
14 cv.waitKey(0)
15 cv.destroyAllWindows()
(2)ones 函数
1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 def create_image():
7 img = np.ones([400, 400, 3], np.uint8)
8 img[:, :, 0] = img[:, :, 0]*255
9 img[:, :, 1] = img[:, :, 1]*255
10 img[:, :, 2] = img[:, :, 2]*255
11 cv.imshow("自制图片", img)
12
13 create_image()
14 cv.waitKey(0)
15 cv.destroyAllWindows()
第8,9,10行换成
image[:, :, 0] = np.ones([400, 400]) * 255
image[:, :, 1] = np.ones([400, 400]) * 255
image[:, :, 2] = np.ones([400, 400]) * 255
建议 img[:, :, 2] = np.ones([400, 400])*255 这样赋值
(3)补充
1 >>>from numpy import *
2 >>> a=zeros((3,4))
3 >>> a
4 array([[ 0., 0., 0., 0.],
5 [ 0., 0., 0., 0.],
6 [ 0., 0., 0., 0.]])
7 >>> from numpy import *
8 >>> a=ones((3,4))
9 >>> a
10 array([[ 1., 1., 1., 1.],
11 [ 1., 1., 1., 1.],
12 [ 1., 1., 1., 1.]])
13 >>> from numpy import *
14 >>> a=eye(3)
15 >>> a
16 array([[ 1., 0., 0.],
17 [ 0., 1., 0.],
18 [ 0., 0., 1.]])
(三)自定义一张单通道的图片
1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 def create_image():
7 img = np.ones([400, 400, 1], np.uint8)
8 img = img * 127
9 cv.imshow("自制图片", img)
10
11 create_image()
12 cv.waitKey(0)
13 cv.destroyAllWindows()
读取一张图片,修改颜色通道后输出,可以得到图像的:行数,列数,通道数的矩阵,对矩阵进行操作可改变图像像素
1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #numpy数组操作
7 def access_pixles(image):
8 print(image.shape)
9 height = image.shape[0]
10 width = image.shape[1]
11 channel = image.shape[2]
12 print("width : %s, height : %s, channel : %s" % (width, height, channel))
13 for row in range(height):
14 for col in range(width):
15 for c in range(channel):
16 pv = image[row, col, c]
17 image[row, col, c] = 255 - pv
18 cv.imshow("修改后", image)
19
20
21 src = cv.imread("C://1.jpg")
22 #cv.namedWindow("原来", cv.WINDOW_NORMAL)
23 cv.imshow("原来", src)
24 t1 = cv.getTickCount()#毫秒级别的计时函数,记录了系统启动以来的时间毫秒
25 access_pixles(src)
26 t2 = cv.getTickCount()
27 time = (t2 - t1)*1000/cv.getTickFrequency()#getTickFrequency用于返回CPU的频率,就是每秒的计时周期数
28 print("time: %s" % time)#输出运行的时间
29 cv.waitKey(0)
30 cv.destroyAllWindows()
1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #像素取反
7 def inverse(image):
8 dst = cv.bitwise_not(image)
9 cv.imshow("取反", dst)
10
11
12 src = cv.imread("C://1.jpg")
13 cv.namedWindow("原来", cv.WINDOW_NORMAL)
14 cv.imshow("原来", src)
15 t1 = cv.getTickCount()
16 inverse(src)
17 t2 = cv.getTickCount()
18 time = (t2 - t1)*1000/cv.getTickFrequency()
19 print("time: %s" % time)
20 cv.waitKey(0)
21 cv.destroyAllWindows()
t1 = cv.getTickCount()
picture_message(scr)
t2 = cv.getTickCount()
time = 1000*(t2-t1)/cv.getTickFrequency()
print('Time is %s ms'% time)
getTickCount():用于返回从操作系统启动到当前所经的计时周期数,看名字也很好理解,get Tick Count(s)。
getTickFrequency():用于返回CPU的频率。get Tick Frequency。这里的单位是秒,也就是一秒内重复的次数。
所以剩下的就很清晰了:
总次数/一秒内重复的次数 = 时间(s)
1000 *总次数/一秒内重复的次数= 时间(ms)
这个逻辑很清晰,没什么问题,但是这里有一个小坑,那就是C版本的cvGetTickFrequency()函数和C++版本的getTickFrequency()的单位不一样,前者以ms计算频率,后者以s为单位计算频率,所以如果使用C版本的cvGetTickFrequency()计算时间的话,应该是:
总次数/一秒内重复的次数*1000 = 时间(ms)
总次数/一秒内重复的次数= 时间(s)
python有关于图像的深度和通道的更多相关文章
- OpenCV——图像的深度与通道数讲解
矩阵数据类型: – CV_(S|U|F)C S = 符号整型 U = 无符号整型 F = 浮点型 E.g.: CV_8UC1 是指一个8位无符号整型单通道矩阵, CV_32FC2是指一个32位浮点型双 ...
- TF-图像的深度和通道的概念(转)
图像的深度和通道概念 图像的深度: 图片是由一个个像素点构成的,所有不同颜色的像素点构成了一副完整的图像,计算机存储图片是以二进制来进行的. 1 bit : 用一位来存储,那么这个像素点的取值范围就是 ...
- OpenCV3编程入门笔记(3)线性滤波、非线性滤波、图像深度、通道
15 遍历图像中的像素,是先for行数后for列数的,也就是一列一列的遍历,matlab中是从1开始计数,opnecv中采用c语言的从0开始计数. 矩阵归一化:normalize()函数,参数 ...
- 跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效
摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现. 本文分享自华为云社区<[Python图像处理] 二十四.图像特效处理之毛玻璃.浮雕 ...
- opencv-图像类型、深度、通道
转自:图像类型 与 opencv中图像基础(大小,深度,通道) 一.图像基本类型 在计算机中,按照颜色和灰度的多少可以将图像分为四种基本类型. 1. 二值图像 2. 灰度图像 3. 索引图像 4 ...
- 【python图像处理】图像的缩放、旋转与翻转
[python图像处理]图像的缩放.旋转与翻转 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图 ...
- 去除图像中的alpha通道或透明度
自从appstore提交app改变后,虽然提交的流程还是和原来一样,但是相比以前还是有很大的改动,本来就不太喜欢 English,改版之后很多东西都变了,开发一个app就已经够他妈的蛋疼啦,上传一个a ...
- python 多进程处理图像,充分利用CPU
默认情况下,Python程序使用一个CPU以单个进程运行.不过如果你是在最近几年配置的电脑,通常都是四核处理器,也就是有8个CPU.这就意味着在你苦苦等待Python脚本完成数据处理工作时,你的电脑其 ...
- 基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境
基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境 前言一.环境准备环境介绍软件下载VMware下安装UbuntuUbuntu下Anaconda的安 ...
随机推荐
- Jetpack Compose学习(6)——关于Modifier的妙用
原文: Jetpack Compose学习(6)--关于Modifier的妙用 | Stars-One的杂货小窝 之前学习记录中也是陆陆续续地将常用的Modifier的方法穿插进去了,本期就来详细的讲 ...
- 数据结构与算法——克鲁斯卡尔(Kruskal)算法
目录 应用场景-公交站问题 克鲁斯卡尔算法介绍 克鲁斯卡尔算法图解 克鲁斯卡尔算法分析 如何判断回路? 代码实现 无向图构建 克鲁斯卡尔算法实现 获取一个点的终点解释 应用场景-公交站问题 某城市新增 ...
- MyBatis-Plus——实践篇
MyBatis-Plus--实践篇 MyBatis-Plus (简称 MP)是一个 MyBatis的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生.进行数据库操作常用 ...
- Python - poetry(1)包管理利器的入门介绍
Python 虚拟环境详解 https://www.cnblogs.com/poloyy/p/15266382.html poetry 官方介绍 github:https://github.com/p ...
- Sentry 监控 - Snuba 数据中台架构(Data Model 简介)
系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...
- 自定义view---仪表盘--kotlin
我们知道一个自定义view一般来说需要继承view或者viewGroup并实现onMeasure, onLayout, onDraw方法. 其中onMeasure用于测量计算该控件的宽高, onLay ...
- gin 集成 consul
"github.com/hashicorp/consul/api" package initialize import ( "fmt" "github ...
- 洛谷4400 BlueMary的旅行(分层图+最大流)
qwq 首先,我们观察到题目中提到的每天只能乘坐一次航班的限制,很容易想到建分层图,也就是通过枚举天数,然后每天加入一层新的点. (然而我一开始想的却是erf) 考虑从小到大枚举天数,然后每次新建一层 ...
- 微信小程序_快速入门01
这段时间,嗯,大四课程已经结束了,工作也已经找到了,但是呢,到公司报道的时间还没到,哈哈,马上就开始人生的第一份工作了,怎么说确实有点期待~ 在这段时间一方面为第一份工作做各种准备,另一方面也没有停止 ...
- 第七次Scrum Metting
日期:2021年5月5日 会议主要内容概述:前后端对接,以及接下来的测试优化等工作. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 徐宇龙 后端 测试数据模块和 ...