[cf1528F]AmShZ Farm
考虑$a_{i}$是"more-equal"的组合意义,有以下构造——
有$n$个位置,每一次选择一个位置$a_{i}$,在$a_{i}$之后(包括$a_{i}$)的第一个空位上停一辆车,那么$a_{i}$即要求每一辆车都可以停(不存在停到第$n+1$个位置及以后的情况)
关于这个问题,可以在之后新增一个位置,并将整个序列变成一个环,那么方案合法当且仅当第$n+1$个位置没有车,由于每一个位置没车的概率相同,即有$(n+1)^{n-1}$种方案
接下来,即对于每一组方案,令$tot_{i}=\sum_{1\le j\le n}[a_{j}=i]$,那么贡献即$\sum_{i=1}^{n}tot_{i}^{k}$
考虑枚举$i$和$tot_{i}$,那么即要求其中恰好$tot_{i}$次为$i$且第$n+1$个位置为空的方案数
由于$i$是任意的,可以看作对于所有$i$每一个位置没车的概率相同,也即有$\sum_{i=1}^{n}{n\choose i}i^{k}n^{n-i}$种方案
将$i^{k}$用第二类斯特林数来计算,即$\sum_{i=1}^{n}{n\choose i}n^{n-i}\sum_{j=0}^{i}{i\choose j}j!S(k,j)$(其中$S(n,m)$为第二类斯特林数)
将组合数展开并交换枚举顺序,即$\sum_{j=0}^{k}S(k,j)\sum_{i=1}^{n}\frac{n!n^{n-i}}{(i-j)!(n-i)!}$(显然当$n<m$时$S(n,m)=0$)
令$i'=i-j$并构造最后一项为二项式展开,即$\sum_{j=0}^{k}\frac{n!}{(n-j)!}S(k,j)\sum_{i'=0}^{n-j}{n-j\choose i'}n^{n-j-i'}$
根据二项式展开,即$\sum_{j=0}^{k}\frac{n!}{(n-j)!}(n+1)^{n-j}S(k,j)$
根据通项公式,即$S(n,m)=\frac{1}{m!}\sum_{i=0}^{m}(-1)^{i}{m\choose i}(m-i)^{n}=\sum_{i=0}^{m}\frac{(-1)^{i}}{i!}\frac{(m-i)^{n}}{(m-i)!}$,直接ntt即可
时间复杂度为$o(k\log k)$,可以通过

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N (1<<18)
4 #define M 100005
5 #define mod 998244353
6 int n,k,ans,rev[N],a[N],b[N],fac[M],inv[M];
7 int qpow(int n,int m){
8 int s=n,ans=1;
9 while (m){
10 if (m&1)ans=1LL*ans*s%mod;
11 s=1LL*s*s%mod;
12 m>>=1;
13 }
14 return ans;
15 }
16 void ntt(int *a,int p){
17 for(int i=0;i<N;i++)
18 if (i<rev[i])swap(a[i],a[rev[i]]);
19 for(int i=2;i<=N;i<<=1){
20 int s=qpow(3,(mod-1)/i);
21 if (p)s=qpow(s,mod-2);
22 for(int j=0;j<N;j+=i)
23 for(int k=0,ss=1;k<(i>>1);k++,ss=1LL*ss*s%mod){
24 int x=a[j+k],y=1LL*ss*a[j+k+(i>>1)]%mod;
25 a[j+k]=(x+y)%mod;
26 a[j+k+(i>>1)]=(x-y+mod)%mod;
27 }
28 }
29 if (p){
30 int s=qpow(N,mod-2);
31 for(int i=0;i<N;i++)a[i]=1LL*a[i]*s%mod;
32 }
33 }
34 int main(){
35 scanf("%d%d",&n,&k);
36 fac[0]=inv[0]=inv[1]=1;
37 for(int i=1;i<M;i++)fac[i]=1LL*fac[i-1]*i%mod;
38 for(int i=2;i<M;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
39 for(int i=1;i<M;i++)inv[i]=1LL*inv[i-1]*inv[i]%mod;
40 for(int i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)+((i&1)<<17);
41 for(int i=0;i<=k;i++){
42 a[i]=inv[i];
43 if (i&1)a[i]=mod-a[i];
44 }
45 for(int i=0;i<=k;i++)b[i]=1LL*qpow(i,k)*inv[i]%mod;
46 ntt(a,0);
47 ntt(b,0);
48 for(int i=0;i<N;i++)a[i]=1LL*a[i]*b[i]%mod;
49 ntt(a,1);
50 int s=1;
51 for(int i=0;i<=min(n,k);i++){
52 ans=(ans+1LL*s*qpow(n+1,n-i)%mod*a[i])%mod;
53 s=1LL*s*(n-i)%mod;
54 }
55 printf("%d",ans);
56 }
[cf1528F]AmShZ Farm的更多相关文章
- Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...
- SharePoint 2013: A feature with ID has already been installed in this farm
使用Visual Studio 2013创建一个可视web 部件,当右击项目选择"部署"时报错: "Error occurred in deployment step ' ...
- How To Collect ULS Log from SharePoint Farm
We can use below command to collect SharePoint ULS log from all servers in the Farm in PowerShell. M ...
- How To Restart timer service on all servers in farm
[array]$servers= Get-SPServer | ? {$_.Role -eq "Application"} $farm = Get-SPFarm foreach ( ...
- ZOJ 2412 Farm Irrigation
Farm Irrigation Time Limit: 2 Seconds Memory Limit: 65536 KB Benny has a spacious farm land to ...
- nginx+iis、NLB、Web Farm、Web Garden、ARR
nginx+iis实现负载均衡 在win2008R2上使用(NLB)网络负载均衡 NLB网路负载均衡管理器详解 [译文]Web Farm和Web Garden的区别? IIS负载均衡-Applicat ...
- 续并查集学习笔记——Closing the farm题解
在很多时候,并查集并不是一个完整的解题方法,而是一种思路. 通过以下题目来体会并查集逆向运用的思想. Description Farmer John and his cows are planning ...
- SharePoint Error - The current user is not an SharePoint Server farm administrator
错误截图 错误日志 位置:C:\Program Files\Common Files\microsoft shared\Web Server Extensions\15\LOGS 主要错误 The c ...
- hdu.1198.Farm Irrigation(dfs +放大建图)
Farm Irrigation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
随机推荐
- Ysoserial Commons Collections3分析
Ysoserial Commons Collections3分析 写在前面 CommonsCollections Gadget Chains CommonsCollection Version JDK ...
- DistSQL:像数据库一样使用 Apache ShardingSphere
Apache ShardingSphere 5.0.0-beta 深度解析的第一篇文章和大家一起重温了 ShardingSphere 的内核原理,并详细阐述了此版本在内核层面,特别是 SQL 能力方面 ...
- 题解 [HAOI2017]方案数
题目传送门 Solution 我们没有障碍的时候很好做,直接设 \(f_{i,j,k}\) 表示到 \((x,y,z)\) \(x\) 有 \(i\) 位为 \(1\),\(y\) 有 \(j\) 位 ...
- 2021.3.10--vj补题
B - Saving the City cf--1443B Bertown is a city with nn buildings in a straight line. The city's sec ...
- 一文弄懂CGAffineTransform和CTM
一文弄懂CGAffineTransform和CTM 一些概念 坐标空间(系):视图(View)坐标空间与绘制(draw)坐标空间 CTM:全称current transformation matrix ...
- Verilog的数据流、行为、结构化与RTL级描述
Verilog语言可以有多种方式来描述硬件,同时,使用这些描述方式,又可以在多个抽象层次上设计硬件,这是Verilog语言的重要特征. 在Verilog语言中,有以下3种最基本的描述方式: 数据流描述 ...
- SpringCloud-SpringBoot-SpringCloudAlibaba对应版本选择
一.SpringCloud-SpringBoot 对应的版本选择 SpringCloud官网常规方式只能查看最新的几个版本信息 https://spring.io/projects/spring-cl ...
- Alpha发布声明
项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 Alpha-发布声明 我们是谁 删库跑路对不队 我们在做什么 题士 进度如何 进度总览 一.功能与特性 1. ...
- BUAA-OO-UML
BUAA-OO-UML 作业架构设计分析 第一次作业 类图如下: 这个架构十分简明,就是在底层数据和调用者之间建立起一层隔离层.但其实可以将转换过程延迟到调用阶段. 第二次作业 类图如下: 架构基本同 ...
- elasticsearch地理位置查询
elasticsearch地理位置查询 一.背景 二.geo数据类型 1.geo_point 2.geo_shape 三.此处对geo_point类型实战 1.背景 2.插入地点数据 1.创建索引 2 ...