[bzoj1982]Moving Pebbles
首先发现当n堆石子可以两两配对时,后手必胜,因为后手可以模仿先手
那么当n堆石子不能两两配对时,先手必胜,因为先手可以做到让其两两配对,然后即先手必胜
这个东西用map维护即可
1 #include<bits/stdc++.h>
2 using namespace std;
3 map<int,int>mat;
4 int n,x,ans;
5 int main(){
6 scanf("%d",&n);
7 for(int i=1;i<=n;i++){
8 scanf("%d",&x);
9 ans+=(mat[x]^=1)*2-1;
10 }
11 if (ans)printf("first player");
12 else printf("second player");
13 }
[bzoj1982]Moving Pebbles的更多相关文章
- BZOJ1982 [Spoj 2021]Moving Pebbles 【博弈论】
题目 Moving Pebbles Two players play the following game. At the beginning of the game they start with ...
- Bzoj 1982: [Spoj 2021]Moving Pebbles 博弈论
1982: [Spoj 2021]Moving Pebbles Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 130 Solved: 88[Submi ...
- [SPOJ2021] Moving Pebbles
[SPOJ2021] Moving Pebbles 题目大意:给你\(N\)堆\(Stone\),两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就 ...
- 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles
E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...
- [BZOJ1982][POJ1740][Spoj 2021]Moving Pebbles|解题报告
这道题的题意BZ和POJ上的都不大清楚... 大概就是给出n堆石子,以及初始每堆石子的个数 两个玩家交替操作,每个操作可以任意在一堆中取任意多的石子 然后再从这堆里拿若干个石子放到某个当前还存在的堆里 ...
- BZOJ 1982 Moving Pebbles
首先我们假设只有两堆, 容易发现当且仅当两堆相等时,先手必败 否则先手必胜 然后我们猜测一下原因: ->当两堆相等时,无论先手怎么做,后手总能使两堆相等,且必败态为0,0 推广一下: 当所有的石 ...
- BZOJ 1982: [Spoj 2021]Moving Pebbles [博弈论 对称]
给你N堆Stone,两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就输了... 以前在poj做过已经忘记了... 构造对称,选最多的一堆往其他堆分 ...
- BZOJ 1982 [Spoj 2021]Moving Pebbles(博弈论)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1982 [题目大意] 两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头, 然后移动任意 ...
- bzoj 1982: [Spoj 2021]Moving Pebbles【博弈论】
必败状态是n为偶数并且数量相同的石子堆可以两两配对,因为这样后手可以模仿先手操作 其他状态一定可以由先手给后手一步拼出一个必败状态(用最大堆补) #include<iostream> #i ...
随机推荐
- 基于go语言学习工厂模式
工厂模式 简单工厂模式(Simple Factory) 定义 优点 缺点 适用范围 代码实现 工厂方法模式(Factory Method) 定义 优点 缺点 适用范围 代码实现 抽象工厂模式(Abst ...
- 题解 Yuno loves sqrt technology II
题目传送门 题目大意 有\(n\)个数,\(m\)个查询,每次查询一个区间内的逆序对个数. \(n,m\le 10^5\) 思路 其实是为了锻炼二次离线才做这道题的. 不难想到可以有一个\(\Thet ...
- Nginx安装及核心配置解析
安装 使用yum进行安装 yum install -y nginx 查看nginx的安装位置 whereis nginx 启动测试 nginx 核心配置文件结构 读取Nginx自带的Nginx配置文件 ...
- C# 提取PDF中的表格
本文介绍在C#程序中(附VB.NET代码)提取PDF中的表格的方法,调用Spire.PDF for .NET提供的提取表格的类以及方法等来获取表格单元格中的文本内容:代码内容中涉及到的主要类及方法归纳 ...
- GPIO位带操作点亮LED,且使用按键控制开关
1. 项目 类似与C51单片机的位操作使能引脚来点亮LED. 例如,sbit P0^0 = 0 LED1 = P0^0; 2. 代码 main.c #include "stm32f10x.h ...
- k8s replicaset controller分析(2)-核心处理逻辑分析
replicaset controller分析 replicaset controller简介 replicaset controller是kube-controller-manager组件中众多控制 ...
- Linux服务器装Anaconda&TensorFlow
远程Linux服务器装Anaconda&指定版本TensorFlow 说明: 由于疫情影响,原先使用的服务器已断电,故重选了一台服务器对环境重选进行搭建,正好补上这篇博文. 01 下载Anac ...
- 是兄弟就来摸鱼 Scrum Meeting 博客汇总
是兄弟就来摸鱼 Scrum Meeting 博客汇总 一.Alpha阶段 第一次Scrum meeting 第二次Scrum meeting 第三次Scrum meeting 第四次Scrum mee ...
- Scrum Meeting 0425
零.说明 日期:2021-4-25 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 完成登录.注册A ...
- [对对子队]会议记录5.14(Scrum Meeting1)
今天已完成的工作 何瑞 工作内容:初步完成循环指令系统 相关issue:实现循环语句系统的逻辑 相关签入:feat:循环语句的指令编辑系统初步完成 吴昭邦 工作内容:将流水线系统和循环 ...