首先发现当n堆石子可以两两配对时,后手必胜,因为后手可以模仿先手
那么当n堆石子不能两两配对时,先手必胜,因为先手可以做到让其两两配对,然后即先手必胜

这个东西用map维护即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 map<int,int>mat;
4 int n,x,ans;
5 int main(){
6 scanf("%d",&n);
7 for(int i=1;i<=n;i++){
8 scanf("%d",&x);
9 ans+=(mat[x]^=1)*2-1;
10 }
11 if (ans)printf("first player");
12 else printf("second player");
13 }

[bzoj1982]Moving Pebbles的更多相关文章

  1. BZOJ1982 [Spoj 2021]Moving Pebbles 【博弈论】

    题目 Moving Pebbles Two players play the following game. At the beginning of the game they start with ...

  2. Bzoj 1982: [Spoj 2021]Moving Pebbles 博弈论

    1982: [Spoj 2021]Moving Pebbles Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 130  Solved: 88[Submi ...

  3. [SPOJ2021] Moving Pebbles

    [SPOJ2021] Moving Pebbles 题目大意:给你\(N\)堆\(Stone\),两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就 ...

  4. 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles

    E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...

  5. [BZOJ1982][POJ1740][Spoj 2021]Moving Pebbles|解题报告

    这道题的题意BZ和POJ上的都不大清楚... 大概就是给出n堆石子,以及初始每堆石子的个数 两个玩家交替操作,每个操作可以任意在一堆中取任意多的石子 然后再从这堆里拿若干个石子放到某个当前还存在的堆里 ...

  6. BZOJ 1982 Moving Pebbles

    首先我们假设只有两堆, 容易发现当且仅当两堆相等时,先手必败 否则先手必胜 然后我们猜测一下原因: ->当两堆相等时,无论先手怎么做,后手总能使两堆相等,且必败态为0,0 推广一下: 当所有的石 ...

  7. BZOJ 1982: [Spoj 2021]Moving Pebbles [博弈论 对称]

    给你N堆Stone,两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就输了... 以前在poj做过已经忘记了... 构造对称,选最多的一堆往其他堆分 ...

  8. BZOJ 1982 [Spoj 2021]Moving Pebbles(博弈论)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1982 [题目大意] 两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头, 然后移动任意 ...

  9. bzoj 1982: [Spoj 2021]Moving Pebbles【博弈论】

    必败状态是n为偶数并且数量相同的石子堆可以两两配对,因为这样后手可以模仿先手操作 其他状态一定可以由先手给后手一步拼出一个必败状态(用最大堆补) #include<iostream> #i ...

随机推荐

  1. AI 事件驱动场景 Serverless 实践

    作者 | 李鹏(元毅) 来源 | Serverless 公众号 一.事件驱动框架:Knative Eventing 事件驱动是指事件在持续事务管理过程中,进行决策的一种策略.可以通过调动可用资源执行相 ...

  2. 人力节省 50%,研发效能提升 40%,阿里 Serverless 架构落地实践

    作者 | 万佳 嘉宾 | 杨皓然(不瞋) 导读:云的下一波浪潮是什么?杨皓然称"是 Serverless".作为一名阿里老兵,他早在 2010 年即加入阿里云,曾深度参与阿里云飞天 ...

  3. HTML5元素背景知识

    目录 HTML5元素背景知识 语义与呈现分离 元素选用原则 少亦可为多 别误用元素 具体为佳,一以贯之 对用户不要想当然 元素说明体例 ol元素 元素速览 文档和元数据元素 文档和元数据元素 文本元素 ...

  4. Linux命令查看内存、整体负载、端口查看、进程查看、vim编辑器(3)

    一.资源占用命令   1.查看内存(free) free命令默认是以kb为单位显示的. free -m用Mb单位来显示. free -h显示单位 . free -h -s 3 ,每隔三秒刷新一次,如果 ...

  5. selenium3 利用cookie实现免登陆

    1.首先访问要操作的页面 2.登陆一次,使用Fiddle等工具抓取出cookie 3.按照如下代码,即可成功登陆 from selenium import webdriver url = " ...

  6. 初学python-day5 集合

  7. BUAA 软工 结对项目作业

    1.相关信息 Q A 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 结对项目作业 我在这个课程的目标是 系统地学习软件工程开发知识,掌握相关流程和技术,提升 ...

  8. Spring 5 中函数式web开发中的swagger文档

    Spring 5 中一个非常重要的更新就是增加了响应式web开发WebFlux,并且推荐使用函数式风格(RouterFunction和 HandlerFunction)来开发WebFlux.对于之前主 ...

  9. 极简实用的Asp.NetCore框架再新增商城模块

    概述 关于这个框架的背景,在前面我已经交代过了.不清楚的可以查看这个链接 1.极简实用的Asp.NetCore模块化框架决定免费开源了 2.极简实用的Asp.NetCore模块化框架新增CMS模块 算 ...

  10. 多边形——————区间dp

    原题链接:https://www.acwing.com/problem/content/285/ 题意简单来说就是:给你一个环,断掉一条边使其成为一个链,用这个链跑dp,求最大得分. 首先这不是一道板 ...