day19.进程通信与线程1
1 进程Queue介绍
1 进程间数据隔离,两个进程进行通信,借助于Queue
2 进程间通信:IPC
-借助于Queue实现进程间通信
-借助于文件
-借助于数据库
-借助于消息队列:rabbitmq,kafka....
1.1 基本使用
from multiprocessing import Process,Queue
if __name__ == '__main__':
# maxsize表示Queue的大小是多少,能放多少东西
queue=Queue(3)
## 放数据
queue.put('zhangsan')
queue.put('liss')
queue.put('wwwww')
queue.put('wwwww',timeout=0.1)
# queue.put_nowait('sdafsd')
#
# res=queue.get()
# print(res)
# res=queue.get()
# print(res)
res=queue.get()
# print(res)
# # 卡住
# # res=queue.get()
# res=queue.get_nowait()
# print(res)
'''
# 实例化得到一个对象,数字表示queue的大熊
queue=Queue(3)
# 放值
# block:是否阻塞
#timeout:等待的时间
queue.put()
#取值
# block:是否阻塞
#timeout:等待的时间
queue.get()
# 不等待,如果满了,就报错
queue.put_nowait()
# 去取值,如果没有值,直接报错
res=queue.get_nowait()
#查看这个queue是否满
queue.full()
#查看queue是否是空的
queue.empty()
# 查看queue中有几个值
queue.qsize()
'''
2 通过Queue实现进程间通信
from multiprocessing import Process,Queue
import os
import time
def task(queue):
print('我这个进程%s开始放数据了'%os.getpid())
time.sleep(10)
queue.put('lqz is handsome')
print('%s我放完了' % os.getpid())
if __name__ == '__main__':
#不写数字,表示可以任意长度
queue=Queue()
p=Process(target=task,args=[queue,])
p.start()
res=queue.get() #会卡在这
print(res)
3 批量生产数据放入Queue再批量取出
from multiprocessing import Process,Queue
import os
def get_task(queue):
res=queue.get()
print('%s这个进程取了数据:%s'%(os.getpid(),res))
def put_task(queue):
queue.put('%s:放了数据'%os.getpid())
if __name__ == '__main__':
queue=Queue(1)
p1=Process(target=put_task,args=[queue])
p2=Process(target=put_task,args=[queue])
p1.start()
p2.start()
p3=Process(target=get_task,args=[queue])
p4=Process(target=get_task,args=[queue])
p3.start()
p4.start()
4 生产者消费者模型(重点)
from multiprocessing import Process, Queue
# import os
#
# import time
# import random
# def producer(queue):
# # 生产的东西,放到Queue中
# for i in range(10):
# data = '%s这个厨师,整了第%s个包子' % (os.getpid(), i)
# print(data)
# # 模拟一下延迟
# time.sleep(random.randint(1,3))
# queue.put('第%s个包子'%i)
#
#
# def consumer(queue):
# # 消费者从queue中取数据,消费(吃包子)
# while True:
#
# res=queue.get()
# # 模拟一下延迟
# time.sleep(random.randint(1, 3))
# print('%s这个消费者,吃了%s'%(os.getpid(),res))
#
#
#
# if __name__ == '__main__':
# queue=Queue(3)
# p=Process(target=producer,args=[queue,])
# p.start()
#
# p1=Process(target=consumer,args=[queue,])
# p1.start()
###### 改良(生产者以及不生产东西了,但是消费者还在等着拿)
# import os
#
# import time
# import random
# def producer(queue):
# # 生产的东西,放到Queue中
# for i in range(10):
# data = '%s这个厨师,整了第%s个包子' % (os.getpid(), i)
# print(data)
# # 模拟一下延迟
# time.sleep(random.randint(1,3))
# queue.put('第%s个包子'%i)
# # 生产完了,在queue中放一个None
# queue.put(None)
#
#
# def consumer(queue):
# # 消费者从queue中取数据,消费(吃包子)
# while True:
#
# res=queue.get()
# if not res:break # 如果去到空,说明打烊了(生产者不生产了),退出
# # 模拟一下延迟
# time.sleep(random.randint(1, 3))
# print('%s这个消费者,吃了%s'%(os.getpid(),res))
#
#
#
# if __name__ == '__main__':
# queue=Queue(3)
# p=Process(target=producer,args=[queue,])
# p.start()
#
# p1=Process(target=consumer,args=[queue,])
# p1.start()
#### 把put none 放在主进程中执行
import os
# import time
# import random
# def producer(queue):
# # 生产的东西,放到Queue中
# for i in range(10):
# data = '%s这个厨师,整了第%s个包子' % (os.getpid(), i)
# print(data)
# # 模拟一下延迟
# time.sleep(random.randint(1,3))
# queue.put('第%s个包子'%i)
#
#
#
# def consumer(queue):
# # 消费者从queue中取数据,消费(吃包子)
# while True:
#
# res=queue.get()
# if not res:break # 如果去到空,说明打烊了(生产者不生产了),退出
# # 模拟一下延迟
# time.sleep(random.randint(1, 3))
# print('%s这个消费者,吃了%s'%(os.getpid(),res))
#
#
#
# if __name__ == '__main__':
# queue=Queue(3)
# p=Process(target=producer,args=[queue,])
# p.start()
#
# p1=Process(target=consumer,args=[queue,])
# p1.start()
#
# # 如果把put None放在这,会有问题
# # 主进程会先执行这句话,消费进程读到None,直接结束,生产者进程没有结束,于是生产一直在生产,消费已经不消费了
# # 直到Queue满了,就一直卡在这了
# # queue.put(None)
#
# ### 如果就要放在这,则如下
# p.join()
# queue.put(None)
5 多个生产者多个消费者的生产者消费者模型
# 多个生产者在生产,多个消费者在消费
# import time
# import random
# def producer(queue,food):
# # 生产的东西,放到Queue中
# for i in range(10):
# data = '%s这个厨师,做了第%s个%s' % (os.getpid(), i,food)
# print(data)
# # 模拟一下延迟
# time.sleep(random.randint(1,3))
# queue.put('第%s个%s'%(i,food))
#
#
# def consumer(queue):
# # 消费者从queue中取数据,消费(吃包子)
# while True:
# res=queue.get()
# if not res:break # 如果去到空,说明打烊了(生产者不生产了),退出
# # 模拟一下延迟
# time.sleep(random.randint(1, 3))
# print('%s这个消费者,吃了%s'%(os.getpid(),res))
#
#
#
# if __name__ == '__main__':
# queue=Queue(3)
# ##起了三个生产者
# p1=Process(target=producer,args=[queue,'包子'])
# p2=Process(target=producer,args=[queue,'骨头'])
# p3=Process(target=producer,args=[queue,'泔水'])
# p1.start()
# p2.start()
# p3.start()
#
#
#
# # 起了两个消费者
# c1=Process(target=consumer,args=[queue,])
# c2=Process(target=consumer,args=[queue,])
# c1.start()
# c2.start()
#
# ##等三个生产者都生产完,放三个None
# p1.join()
# p2.join()
# p3.join()
# queue.put(None)
# queue.put(None)
# queue.put(None)
##如果消费者多,比生产者多出来的消费者不会停
import time
import random
def producer(queue, food,name):
# 生产的东西,放到Queue中
for i in range(10):
data = '%s:这个厨师,做了第%s个%s' % (name, i, food)
print(data)
# 模拟一下延迟
time.sleep(random.randint(1, 3))
queue.put('第%s个%s' % (i, food))
def consumer(queue,name):
# 消费者从queue中取数据,消费(吃包子)
while True:
try:
res = queue.get(timeout=20)
# 模拟一下延迟
time.sleep(random.randint(1, 3))
print('%s这个消费者,吃了%s' % (name, res))
except Exception as e:
print(e)
break
if __name__ == '__main__':
queue = Queue(3)
##起了三个生产者
p1 = Process(target=producer, args=[queue, '包子','egon'])
p2 = Process(target=producer, args=[queue, '骨头','lqz'])
p3 = Process(target=producer, args=[queue, '泔水','jsason'])
p1.start()
p2.start()
p3.start()
# 起了四个个消费者
c1 = Process(target=consumer, args=[queue, 'a'])
c2 = Process(target=consumer, args=[queue,'b' ])
c3 = Process(target=consumer, args=[queue,'c' ])
c4 = Process(target=consumer, args=[queue,'d' ])
c1.start()
c2.start()
c3.start()
c4.start()
6 进程间数据共享(了解)
from multiprocessing import Process,Manager,Lock
# 魔法方法:类内以__开头__结尾的方法,都叫魔法方法,某种情况下会触发它的执行
'''
__init__ :类()触发
__new__:
__getattr__
__setattr__
__getitem__
__setitem__
'''
# def task(dic,lock):
# # lock.acquire()
# # dic['count']-=1
# # lock.release()
# with lock:
# dic['count'] -= 1
#
# if __name__ == '__main__':
# lock = Lock()
# with Manager() as m:
# # 如果直接定义dict,这个dict在多个进程中其实是多份,进程如果改,只改了自己的
# #如果定义的是m.dict({'count': 100}),多个进程之间就可以共享这个数据
# dic = m.dict({'count': 100})
#
# p_l = []
# for i in range(100):
# p = Process(target=task, args=(dic, lock))
# p_l.append(p)
# p.start()
# for p in p_l:
# p.join()
def task(dic,lock):
with lock:
dic['count'] -= 1
if __name__ == '__main__':
lock = Lock()
dic={'count':100}
p_l = []
for i in range(100):
p = Process(target=task, args=(dic, lock))
p_l.append(p)
p.start()
for p in p_l:
p.join()
print(dic)
7 线程概念
如果把我们上课的过程看成一个进程的话,那么我们要做的是耳朵听老师讲课,手上还要记笔记,脑子还要思考问题,这样才能高效的完成听课的任务。而如果只提供进程这个机制的话,上面这三件事将不能同时执行,同一时间只能做一件事,听的时候就不能记笔记,也不能用脑子思考,这是其一;如果老师在黑板上写演算过程,我们开始记笔记,而老师突然有一步推不下去了,阻塞住了,他在那边思考着,而我们呢,也不能干其他事,即使你想趁此时思考一下刚才没听懂的一个问题都不行,这是其二
#进程是资源分配的最小单位,线程是CPU调度的最小单位。每一个进程中至少有一个线程。
from threading import Thread
from queue import Queue
import os
import time
def task():
time.sleep(3)
print('我是子线程执行的')
print(os.getpid())
if __name__ == '__main__':
# 启动线程
ctime = time.time()
t = Thread(target=task)
t.start()
# task()
time.sleep(3)
print(os.getpid())
print(time.time() - ctime)
day19.进程通信与线程1的更多相关文章
- java多线程上篇(三) -- 进程通信和线程死锁简单介绍
进程通信指的是进程间的信息交换 ,IPC(Inter-Process Communication,进程间通信) 进程通信就相当于一种工作方式.沟通形式,进程通信主要指的就是操作系统提供的进程通信工具( ...
- day36——死锁、递归锁、信号量、GIL、多线程实现socket通信、线程池和进程池
day36 死锁现象与递归锁 死锁现象 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这 ...
- Windows线程+进程通信
一 Windows线程进程 1)定义 按照MS的定义, Windows中的进程简单地说就是一个内存中的可执行程序, 提供程序运行的各种资源. 进程拥有虚拟的地址空间, 可执行代码, 数据, 对象句柄集 ...
- Android 进程通信机制之 AIDL
什么是 AIDL AIDL 全称 Android Interface Definition Language,即 安卓接口描述语言.听起来很深奥,其实它的本质就是生成进程间通信接口的辅助工具.它的存在 ...
- Linux下进程通信的八种方法
Linux下进程通信的八种方法:管道(pipe),命名管道(FIFO),内存映射(mapped memeory),消息队列(message queue),共享内存(shared memory),信号量 ...
- 进程通信之一 使用WM_COPYDATA C++及C#实现(转)
进程间通信最简单的方式就是发送WM_COPYDATA消息.本文提供C++及C#程序相互通信的二种实现方式.这样消息的接收端可以用C++实现,发送端可以用C++或C#实现. 发送WM_COPYD ...
- 【Chromium中文文档】跨进程通信 (IPC)
跨进程通信 (IPC) 转载请注明出处:https://ahangchen.gitbooks.io/chromium_doc_zh/content/zh//General_Architecture/I ...
- C#通过接口与线程通信(捕获线程状态)介绍
C#通过接口与线程通信(捕获线程状态)介绍 摘要:本文介绍C#通过接口与线程通信(捕获线程状态),并提供简单的示例代码供参考. 提示:本文所提到的线程状态变化,并不是指线程启动.暂停.停止,而是说线程 ...
- 微端游戏启动器LAUNCHER的制作之MFC版一(序和进程通信)
额...刚开始信誓旦旦说要写launcher制作的博客,还没写完就被抛到脑后了真是没毅力.最近把之前写的wpf的launcher改成了mfc版,遇到很多问题,写了三个星期才写完,好好记录一下吧.我也想 ...
随机推荐
- CSS中Position属性static、absolute、fixed、relative
在html中网页可以看成一个立体的空间,一个完整的页面是由很多个页面堆积形成的,如下图所示 CSS中Position属性有四个可选值,它们分别是:static.absolute.fixed.rel ...
- yum安装MySQL8 - Centos8
官方地址:https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html 参考博客地址:https://www.jia ...
- 翻译:《实用的Python编程》02_06_List_comprehension
目录 | 上一节 (2.5 collections模块) | 下一节 (2.7 对象模型) 2.6 列表推导式 一个常见的任务是处理列表中的项(译注:元素).本节介绍列表推导式,完成此任务的强大工具. ...
- iOS之CoreBluetooth
思路 手机与设备间的通讯方式CoreBluetooth是比较常见且通用的.在iOS开发中需明晰以下几点 蓝牙4.0最多可联机7个设备,iPhone6以上都是蓝牙4.0 两台iPhone并不直接通过蓝牙 ...
- Get和Post请求方式
Get和Post是两种不同的类型的请求. 它们主要有3点不同. 1.get请求通过浏览器地址栏传递表单数据.post请求通过form data 传递数据,不会通过地址栏. 2.get请求安全性较低,p ...
- 记一次Drone无法触发构建的问题
问题 好巧不巧,当你晚上准备上线的时候,在下午临近下班的时候CI&CD工具出问题了,提交代码不能触发构建,不能上线了,Drone平台那边也下班了,正好CICD依赖的公司git仓库也出问题了(就 ...
- Elasticsearch核心技术(一):Elasticsearch环境搭建
磨刀不误砍柴工,要学习Elasticsearch,首先要搭建起来一套学习环境,本文为手把手教你在MacOS上面搭建Elasticsearch学习环境. 1.1 Elasticsearch安装 Elas ...
- JS时间格式转成字符串
formatNumber = n => { n = n.toString(); return n[1] ? n : '0' + n }; // 时间格式化 formatTime = date = ...
- mysql内一些可以报错注入的查询语句
一.exp() 取反参数 该函数简单来说就是,以e为底的对数,在当传递一个大于709的值时,函数exp()就会引起一个溢出错误,取反则可以导致很小的数值变得很大,比如说0 这样既可配合使用,e ...
- 漏洞复现-ActiveMq任意文件写入漏洞(CVE-2016-3088)
0x00 实验环境 攻击机:Win 10 靶机也可作为攻击机:Ubuntu18 (docker搭建的vulhub靶场) 0x01 影响版本 未禁用PUT.MOVE等高危方法的ActiveM ...