题解

难得啊,本来能 \(AC\) 的一道题,注释没删,挂了五分,难受

此题暴力很好想,就是直接 \(n^2\) 枚举不同的矩阵组合,记录块内答案和跨块的答案

出题人不会告诉你,这题只要输出块内答案就可以拿到 \(65pts\) 。

一个很简单的优化就是按 \(x_1\) 的值先排个序,然后判断

if (mat[j].x1-mat[i].x2>1) break;

但是这种玄学优化仍可以被上下一条链似的块卡掉,但良心出题人竟然没卡。

正解应该是按两维的坐标均排个序,然后二分查找,求出符合要求的块,复杂度 \(\mathcal O(nlogn)\)

我不会告诉你其实常数小的暴力其实比正解还快了一倍

Code

\(AC\kern 0.4em CODE:\)

#include<bits/stdc++.h>
#define ri register int
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
inline int read() {
ri x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x*f;
}
}
using IO::read;
namespace nanfeng{
#define int long long
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
#undef bool
static const int N=1e5+7;
struct Matrix{
int x1,y1,x2,y2;
friend inline bool operator<(Matrix m1,Matrix m2) {return m1.x1<m2.x1;}
Matrix(){}
Matrix(int x1,int y1,int x2,int y2):x1(x1),y1(y1),x2(x2),y2(y2){}
}mat[N];
int n,ans;
inline int calc(Matrix m) {
int res=0;
int x=m.x2-m.x1,y=m.y2-m.y1;
if (x>y) swap(x,y);
res+=(x*x<<1);
res+=(y-x)*(x<<1);
return res;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
n=read();
for (ri i(1);i<=n;p(i)) {
int x1=read(),y1=read(),x2=read(),y2=read();
mat[i]=Matrix(x1,y1,x2,y2);
}
if (n==1) {printf("%lld\n",calc(mat[1]));return 0;}
sort(mat+1,mat+n+1);
// for (ri i(1);i<=n;p(i))
for (ri i(1);i<n;p(i)) {
ans+=calc(mat[i]);
// printf("%lld %lld %lld %lld\n",mat[i].x1,mat[i].y1,mat[i].x2,mat[i].y2);
for (ri j(i+1);j<=n;p(j)) {
if (mat[j].x1-mat[i].x2>1) break;
if (mat[j].x1-mat[i].x2==1) {
if (mat[j].y1-mat[i].y2>1||mat[i].y1-mat[j].y2>1) continue;
if (mat[j].y1-mat[i].y2==1||mat[i].y1-mat[j].y2==1) {ans+=1;continue;}
ans+=(cmin(mat[i].y2,mat[j].y2)-cmax(mat[i].y1,mat[j].y1))<<1;
if (cmax(mat[i].y2,mat[j].y2)>cmin(mat[i].y2,mat[j].y2)) ans+=1;
if (cmax(mat[i].y1,mat[j].y1)>cmin(mat[i].y1,mat[j].y1)) ans+=1;
} else if (mat[j].y1>mat[i].y2) {
if (mat[j].y1-mat[i].y2>1) continue;
ans+=(cmin(mat[i].x2,mat[j].x2)-mat[j].x1)<<1;
if (mat[i].x1<mat[j].x1) ans+=1;
if (cmax(mat[i].x2,mat[j].x2)>cmin(mat[i].x2,mat[j].x2)) ans+=1;
} else {
if (mat[i].y1-mat[j].y2>1) continue;
ans+=(cmin(mat[i].x2,mat[j].x2)-mat[j].x1)<<1;
if (mat[i].x1<mat[j].x1) ans+=1;
if (cmax(mat[i].x2,mat[j].x2)>cmin(mat[i].x2,mat[j].x2)) ans+=1;
}
// if (i==2) printf("%lld %lld %lld %lld ans=%lld\n",mat[j].x1,mat[j].y1,mat[j].x2,mat[j].y2,ans);
}
// printf("ans=%lld\n",ans);
}
// printf("%lld %lld %lld %lld\n",mat[n].x1,mat[n].y1,mat[n].x2,mat[n].y2);
printf("%lld\n",ans+calc(mat[n]));
return 0;
}
#undef int
}
int main() {return nanfeng::main();}

NOIP 模拟 6 辣鸡的更多相关文章

  1. noip模拟6[辣鸡·模板·大佬·宝藏]

    这怕不是学长出的题吧 这题就很迷 这第一题吧,正解竟然是O(n2)的,我这是快气死了,考场上一直觉得aaaaa n2过不了过不了, 我就去枚举边了,然后调了两个小时,愣是没调出来,然后交了个暴力,就走 ...

  2. [CSP-S模拟测试]:辣鸡(ljh) (暴力)

    题目描述 辣鸡$ljh\ NOI$之后就退役了,然后就滚去学文化课了.然而在上化学课的时候,数学和化学都不好的$ljh$却被一道简单题难住了,受到了大佬的嘲笑.题目描述是这样的:在一个二维平面上有一层 ...

  3. NOIP模拟测试10「大佬·辣鸡·模板」

    大佬 显然假期望 我奇思妙想出了一个式子$f[i]=f[i-1]+\sum\limits_{j=1}^{j<=m} C_{k \times j}^{k}\times w[j]$ 然后一想不对得容 ...

  4. 7.29 NOIP模拟测试10 辣鸡(ljh)+模板(ac)+大佬(kat)

    T1 辣鸡(ljh) 就是一道分类讨论的暴搜,外加一丢丢的减枝,然而我挂了,为啥呢,分类讨论变量名打错,大于小于号打反,能对才怪,写了sort为了调试就注释了,后来忘了解开,小减枝也没打.但是这道题做 ...

  5. 10.17 NOIP模拟赛

    目录 2018.10.17 NOIP模拟赛 A 咒语curse B 神光light(二分 DP) C 迷宫maze(次短路) 考试代码 B 2018.10.17 NOIP模拟赛 时间:1h15min( ...

  6. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

  7. 2019.7.29 NOIP模拟测试10 反思总结【T2补全】

    这次意外考得不错…但是并没有太多厉害的地方,因为我只是打满了暴力[还没去推T3] 第一题折腾了一个小时,看了看时间先去写第二题了.第二题尝试了半天还是只写了三十分的暴力,然后看到第三题是期望,本能排斥 ...

  8. noip模拟6(T2更新

    由于蒟弱目前还没调出T1和T2,所以先写T3和T4.(T1T2更完辣! update in 6.12 07:19 T3 大佬 题目描述: 他发现katarina大佬真是太强了,于是就学习了一下kata ...

  9. Solution Set - 神奇 NOIP 模拟赛

    \[\mathfrak{\text{Defining }\LaTeX\text{ macros...}}\newcommand{\vct}[1]{\boldsymbol{#1}}\newcommand ...

随机推荐

  1. CentOS 7 文件权限之访问控制列表(ACL)

    Linux的ACL是文件权限访问的一种手段.当拥有者所属组其他人(own,group,other)不能满足给一个单独的用户设置单独的权限时,ACL的出现就很好的解决了该问题. 比如其他用户own,不属 ...

  2. C语言:预处理 编译过程分解 证明图

  3. 解决Git Clone速度过慢的方法

    Git Clone速度慢,原因很简单,默认的源是国外的,只需要使用国内源,速度就起飞了(当然,也没有太快,至少可以忍受了).使用方法很简单,在clone某个项目的时候将github.com替换为git ...

  4. Java数据库分表与多线程查询结果汇总

    今天接到一个需求:要对一个物理分表的逻辑表进行查询统计.而数据库用的是公司自己研发的产品,考虑的到公司产品的特点以及业务的需求,该逻辑表是按年月进行分表的,而非分区.我们来看一下,在按时间段进行查询统 ...

  5. JS文件延迟和异步加载:defer和async属性

    -般情况下,在文档的 <head> 标签中包含 JavaScript 脚本,或者导入的 JavaScript 文件.这意味着必须等到全部 JavaScript 代码都被加载.解析和执行完以 ...

  6. 第二篇 -- SpringBoot入门Helloworld

    之前讲Jmeter接口的时候讲过社区版怎么创建web接口,那么现在用企业版创建一个Springboot项目.企业版自带Springboot,新建起来更加简单. 第一步:新建一个项目 第二步:选择Spr ...

  7. EF中数据修改时动态更新其他数据

    场景 利用.net core开发时,经常会遇到使用EF(Entity Framework),但是今天在开发过程中发现一个值莫名其妙的自己变了,我怀疑是EF的问题. 主要代码如下: 1 // 最近一条告 ...

  8. 🔥 LeetCode 热题 HOT 100(41-50)

    102. 二叉树的层序遍历 思路:使用队列. /** * Definition for a binary tree node. * public class TreeNode { * int val; ...

  9. leetcode 有效三角形的个数

    题目描述: 平明伞兵解法: 既然要求满足三角形要求的三边,简单来说,就是最短两边之和大于第三边,所以,第一步Arrays.sort().先排序,然后直接伞兵暴力法,三重循环.当然最后肯定是能跑出来的, ...

  10. 🏆【Java技术专区】「编译器专题」重塑认识Java编译器的执行过程(消除数组边界检查+公共子表达式)!

    前提概要 Java的class字节码并不是机器语言,要想让机器能够执行,还需要把字节码翻译成机器指令.这个过程是Java虚拟机做的,这个过程也叫编译.是更深层次的编译. 在编译原理中,把源代码翻译成机 ...