题解 \(by\;zj\varphi\)

一道概率与期望好题

对于一棵树,去掉根后所有子树就是一个森林,同理,一个森林加一个根就是一棵树

设 \(f_{i,j}\) 为有 \(i\) 个点的树,高度为 \(j\) 的期望,那么 \(f_{i,j}=g_{i-1,j-1}\) 其中 \(g_{i,j}\) 表示有 \(i\) 个点的森林深度为 \(j\) 的概率

一个森林也可以看成是一棵树加上一个森林

至于 \(g\),\(g_{i,j}=\sum_{k=1}^{i}f_{k,j}g_{i-k,j}dp_{i,k}\) 其中 \(dp_{i,k}\) 就是一个有 \(i\) 个点的森林,有 \(k\) 个构成了一棵树

Code
#include<bits/stdc++.h>
#define ri register int
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
// #define int long long
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=220;
int dp[N][N],f[N][N],g[N][N],inv[N],n,p,ans;
inline int fpow(int x,int y) {
ri res=1;
while(y) {
if (y&1) res=(ll)res*(ll)x%p;
x=(ll)x*x%p;y>>=1;
}
return res;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(p);
for (ri i(2);i<=n;p(i)) inv[i]=fpow(i,p-2);
dp[1][0]=dp[1][1]=1;
for (ri i(2);i<=n;p(i)) {
for (ri j(1);j<=i;p(j)) {
dp[i][j]=(ll)dp[i-1][j-1]*(j-1)%p*inv[i]%p+(ll)dp[i-1][j]*(i-j)%p*inv[i]%p;
dp[i][j]%=p;
}
}
for (ri i(0);i<=n;p(i)) f[0][i]=g[0][i]=1;
for (ri i(1);i<=n;p(i))
for (ri j(i-1);j<n;p(j)) f[i][j]=g[i][j]=1;
for (ri i(2);i<=n;p(i)) {
for (ri j(0);j<i-1;p(j)) {
if (j) f[i][j]=g[i-1][j-1];
for (ri k(1);k<=i;p(k)) {
g[i][j]+=(ll)f[k][j]*g[i-k][j]%p*dp[i][k]%p;
g[i][j]%=p;
}
}
}
for (ri i(1);i<n;p(i)) ans+=(ll)i*((f[n][i]-f[n][i-1]+p)%p)%p,ans%=p;
printf("%d\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $20\; \rm 玩具$的更多相关文章

  1. NOIP 模拟 $20\; \rm y$

    题解 \(by\;zj\varphi\) 首先发现一共最多只有 \(2^d\) 种道路,那么可以状压,(不要 \(dfs\),会搜索过多无用的状态) 那么设 \(f_{i,j,k}\) 为走 \(i\ ...

  2. NOIP 模拟 $20\; \rm z$

    题解 很考验思维的一道题 对于不同的任务点,发现如果 \(x_{i-1}<x_i<x_{i+1}\) 或 \(x_{i-1}>x_i>x_{i+1}\) 那么 \(x_i\) ...

  3. 7.22 NOIP模拟7

    又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...

  4. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  5. 20190725 NOIP模拟8

    今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...

  6. 20190902+0903合集-NOIP模拟

    一直没时间写QwQ 于是补一下. Day 1 晚饭吃的有点恶心…… $1s\,2s\,5s$ 还开 -O2 ?? 有点恐怖. T1 猛的一想: 把外面设成一个点, 向入口连一条权为排队时间的边 从出口 ...

  7. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  8. NOIP 模拟 $16\; \rm Lost My Music$

    题解 \(by\;zj\varphi\) 一道凸包的题 设 \(\rm dep_u\) 表示节点 \(u\) 的深度,那么原式就可化为 \(-\frac{c_v-c_u}{dep_v-dep_u}\) ...

  9. 道路 [NOIP模拟]

    Description 我们看见了一个由 m 行 n 列的 1*1 的格子组成的矩阵,每个格子(I,j)有对应的高度 h[i][j]和初始的一个非负权值 v[i][j].我们可以随便选择一个格子作为起 ...

随机推荐

  1. asp.net mvc中的路由

    [Route] 路由 [Route("~/")] 忽略路由前缀 [Route("person/{id:int}")] 路由内联约束 [Route("h ...

  2. 深度解析 Lucene 轻量级全文索引实现原理

    一.Lucene简介 1.1 Lucene是什么? Lucene是Apache基金会jakarta项目组的一个子项目: Lucene是一个开放源码的全文检索引擎工具包,提供了完整的查询引擎和索引引擎, ...

  3. PYD应用方法

    1. 'ImportError: No module named xxx' 可能是xxx.pyd所在路径不在sys.path中. 解决方法:import之前用sys.path.append()方法加入 ...

  4. 在Springboot + Mybaitis-plus 项目中利用Jackson实现json对java多态的(反)序列化

    Jackson允许配置多态类型处理,当JSON面对的转换对象是一个接口.抽象类或者一个基类的时候,可以通过一定配置实现JSON的转换.在实际项目中,Controller层接收入参以及在Dao层将对象以 ...

  5. 【LeetCode】137. 只出现一次的数字 II(剑指offer 56-II)

    137. 只出现一次的数字 II(剑指offer 56-II) 知识点:哈希表:位运算 题目描述 给你一个整数数组 nums ,除某个元素仅出现 一次 外,其余每个元素都恰出现 三次 .请你找出并返回 ...

  6. Spring RestTemplate 之post请求

    ●post请求:在RestTemplate中,POST请求可以通过如下三个方法来发起,但post提交方式又有两种 formData 和 payLoad,而且接口设计与传统的浏览器使用的提交方式又有差异 ...

  7. Vue中Object和Array数据变化侦测原理

    在学完Vue.js框架,完成了一个SPA项目后,一直想抽时间找本讲解Vue.js内部实现原理的书来看看,经过多方打听之后,我最后选择了<深入浅出Vue.js>这本书.然而惭愧的是,这本书已 ...

  8. Linux下系统防火墙的发展历程和怎样学好防火墙(iptalbes和firewalld)

    有关firewalld和iptables详细使用的文章 iptables详解 firewalld详解 =====================================华丽的分割线====== ...

  9. 解析ArrayList的底层实现(上)

    private static final long serialVersionUID = 8683452581122892189L;//唯一序列号ID private static final int ...

  10. 【动画消消乐】HTML+CSS 白云飘动效果 072

    前言 Hello!小伙伴! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出-   自我介绍 ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|C++选手|学生 简介:因C语言结识编程,随后转入计 ...