\(\mathcal{Descriptoin}\)

  Link.

  你有一个容量为 \(k\) 的空书架,现在共有 \(n\) 个请求,每个请求给定一本书 \(a_i\)。如果你的书架里没有这本书,你就必须以 \(c_{a_i}\) 的价格购买这本书放入书架。当然,你可以在任何时候丢掉书架里的某本书。请求出完成这 \(n\) 个请求所需要的最少价钱。

  \(n,k\le80\)。

\(\mathcal{Solution}\)

  网络瘤嘛……

  费用流,考虑先全部买入,再抵消花费。具体地,假设 \(i<j\),第 \(i\) 天的书和第 \(j\) 天的书相同,就可以一直保留第 \(i\) 天的书到第 \(j\) 天,减少一次花费。脑洞一番之后,建图如下:

  • \(S\) 向 \(v_i~(i=1,2,\dots n)\) 连边,容量为 \(1\),费用为 \(c_{a_i}\),表示买入。
  • \(v_i\) 向 \(v_{i+1}~(i=1,2,\cdots,n-1)\) 连边,容量为 \(k-1\),费用为 \(0\),表示保留至多 \(k-1\) 本,剩下一本给 \(a_{i+1}\) 留位置。
  • \(v_i\) 向 \(v_i'~(i=1,2,\cdots,n)\) 连边,容量为 \(1\),费用为 \(0\),表示将这本书出手(丢掉或卖掉)。
  • \(v_{i-1}\) 向上一次 \(a_i\) 出现的位置 \(j\) 所对应的 \(v_j'\) 连边,容量为 \(1\),费用为 \(-c_{a_i}\),表示上次的“出手”是卖掉,以抵消 本次 \(a_i\) 的花费。
  • \(v_i'\) 向 \(T\) 连边,容量为 \(1\),费用为 \(0\)。

  费用流求出的最小费用就是答案。

\(\mathcal{Code}\)

#include <queue>
#include <cstdio> typedef std::pair<int, int> pii; const int MAXN = 80, MAXND = MAXN * 2 + 2, MAXED = 5 * MAXN, INF = 0x3f3f3f3f;
int n, K, S, T, ecnt = 1, a[MAXN + 5], c[MAXN + 5], las[MAXN + 5];
int head[MAXND + 5], curh[MAXND + 5], d[MAXND + 5];
bool vis[MAXND + 5]; struct Edge { int to, flow, cost, nxt; } graph[MAXED * 2 + 5]; inline void link ( const int s, const int t, const int f, const int c ) {
graph[++ ecnt] = { t, f, c, head[s] };
head[s] = ecnt;
} inline void addEdge ( const int s, const int t, const int f, const int c ) {
link ( s, t, f, c ), link ( t, s, 0, -c );
} inline pii DFS ( const int u, int iflow ) {
vis[u] = true;
if ( u == T ) return { iflow, 0 };
int oflow = 0, ocost = 0;
for ( int& i = curh[u], v; i; i = graph[i].nxt ) {
if ( ! vis[v = graph[i].to] && d[v] == d[u] + graph[i].cost && graph[i].flow ) {
pii of ( DFS ( v, std::min ( iflow, graph[i].flow ) ) );
oflow += of.first, ocost += of.first * graph[i].cost + of.second;
graph[i].flow -= of.first, graph[i ^ 1].flow += of.first;
if ( ! ( iflow -= of.first ) ) break;
}
}
if ( ! oflow ) d[u] = INF;
return { oflow, ocost };
} inline bool SPFA () {
static std::queue<int> que;
static bool inq[MAXND + 5];
for ( int i = 0; i <= T; ++ i ) d[i] = INF, inq[i] = false;
que.push ( S ), d[S] = 0, inq[S] = true;
for ( int u; ! que.empty (); ) {
inq[u = que.front ()] = false, que.pop ();
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( d[v = graph[i].to] > d[u] + graph[i].cost && graph[i].flow ) {
d[v] = d[u] + graph[i].cost;
if ( ! inq[v] ) que.push ( v ), inq[v] = true;
}
}
}
return d[T] ^ INF;
} inline int Dinic () {
int ret = 0;
for ( ; SPFA (); ret += DFS ( S, INF ).second ) {
for ( int i = 0; i <= T; ++ i ) {
vis[i] = false;
curh[i] = head[i];
}
}
return ret;
} int main () {
scanf ( "%d %d", &n, &K );
for ( int i = 1; i <= n; ++ i ) scanf ( "%d", &a[i] );
for ( int i = 1; i <= n; ++ i ) scanf ( "%d", &c[i] );
S = 0, T = n << 1 | 1;
for ( int i = 1; i <= n; ++ i ) {
addEdge ( S, i, 1, c[a[i]] ), addEdge ( i, i + n, 1, 0 );
if ( las[a[i]] ) addEdge ( i - 1, las[a[i]] + n, 1, -c[a[i]] );
if ( i < n ) addEdge ( i, i + 1, K - 1, 0 );
addEdge ( i + n, T, 1, 0 ), las[a[i]] = i;
}
printf ( "%d\n", Dinic () );
return 0;
}

Solution -「CF 802C」Heidi and Library (hard)的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. win10 配置maven

    1.官网下载后,解压到需要的文件夹 2.进入文件夹,获取根目录的路径 3.配置环境变量 两个都要 M2_HOME MAVEN_HOME 3.配置path ,以相对路径的方式配置bin目录 4.测试是否 ...

  2. Word2010邮件合并制作成绩单

    原文链接: https://www.toutiao.com/i6488941003494392333/ 准备数据源: 选择"邮件"选项卡,"开始邮件合并"功能组 ...

  3. Android官方文档翻译 二 1.Building Your First App

    Building Your First App 创建你的第一个App项目 Dependencies and prerequisites 依赖关系和先决条件 * Android SDK * ADT Pl ...

  4. 【解决了一个小问题】alert manager中的cluster.advertise-address参数是什么意思?

    如果在启动 alert manager的时候,不填写参数: /usr/bin/alertmanager --config.file=/etc/alert_manager/alertmanager.ya ...

  5. Nginx代理常用参数

    目录 一:Nginx代理常用参数 1.添加发往后端服务器的请求头信息 二:参数案例 1.lb01配置文件 2.web01 web02 web服务器 3.测试 4.重启 5.DNS域名解析 6.网址测试 ...

  6. Java高级语法之反射

    Java高级语法之反射 什么是反射 java.lang包提供java语言程序设计的基础类,在lang包下存在一个子包:reflect,与反射相关的APIs均在此处: 官方对reflect包的介绍如下: ...

  7. Linux身份鉴别机制原理

    传统的UNIX身份鉴别机制原理 传统的UNIX身份鉴别即口令认证方式,它主要通过识别用户的用户名或者UID号获取在/etc/shadow中存放的对应用户密码密文等信息,然后获取用户输入密码并采用cry ...

  8. 学习JAVAWEB第十一天

    今天以及明天做登录案例,复习所学知识.

  9. 学习Java第9天

    今天所作的工作: 反射,枚举类型与泛型 明天工作: 1.线程 2.网络通信 所遇到的问题及解决方法: 反射基本思想,泛型类似于类模板. 理解反射太难了,转悠了好半天,关键是理解反射的思想,才容易学.

  10. React之redux学习日志(redux/react-redux/redux-saga)

    redux官方中文文档:https://www.redux.org.cn/docs/introduction/CoreConcepts.html react-redux Dome:https://co ...