Solution -「CF 802C」Heidi and Library (hard)
\(\mathcal{Descriptoin}\)
Link.
你有一个容量为 \(k\) 的空书架,现在共有 \(n\) 个请求,每个请求给定一本书 \(a_i\)。如果你的书架里没有这本书,你就必须以 \(c_{a_i}\) 的价格购买这本书放入书架。当然,你可以在任何时候丢掉书架里的某本书。请求出完成这 \(n\) 个请求所需要的最少价钱。
\(n,k\le80\)。
\(\mathcal{Solution}\)
网络瘤嘛……
费用流,考虑先全部买入,再抵消花费。具体地,假设 \(i<j\),第 \(i\) 天的书和第 \(j\) 天的书相同,就可以一直保留第 \(i\) 天的书到第 \(j\) 天,减少一次花费。脑洞一番之后,建图如下:
- \(S\) 向 \(v_i~(i=1,2,\dots n)\) 连边,容量为 \(1\),费用为 \(c_{a_i}\),表示买入。
- \(v_i\) 向 \(v_{i+1}~(i=1,2,\cdots,n-1)\) 连边,容量为 \(k-1\),费用为 \(0\),表示保留至多 \(k-1\) 本,剩下一本给 \(a_{i+1}\) 留位置。
- \(v_i\) 向 \(v_i'~(i=1,2,\cdots,n)\) 连边,容量为 \(1\),费用为 \(0\),表示将这本书出手(丢掉或卖掉)。
- \(v_{i-1}\) 向上一次 \(a_i\) 出现的位置 \(j\) 所对应的 \(v_j'\) 连边,容量为 \(1\),费用为 \(-c_{a_i}\),表示上次的“出手”是卖掉,以抵消 本次 \(a_i\) 的花费。
- \(v_i'\) 向 \(T\) 连边,容量为 \(1\),费用为 \(0\)。
费用流求出的最小费用就是答案。
\(\mathcal{Code}\)
#include <queue>
#include <cstdio>
typedef std::pair<int, int> pii;
const int MAXN = 80, MAXND = MAXN * 2 + 2, MAXED = 5 * MAXN, INF = 0x3f3f3f3f;
int n, K, S, T, ecnt = 1, a[MAXN + 5], c[MAXN + 5], las[MAXN + 5];
int head[MAXND + 5], curh[MAXND + 5], d[MAXND + 5];
bool vis[MAXND + 5];
struct Edge { int to, flow, cost, nxt; } graph[MAXED * 2 + 5];
inline void link ( const int s, const int t, const int f, const int c ) {
graph[++ ecnt] = { t, f, c, head[s] };
head[s] = ecnt;
}
inline void addEdge ( const int s, const int t, const int f, const int c ) {
link ( s, t, f, c ), link ( t, s, 0, -c );
}
inline pii DFS ( const int u, int iflow ) {
vis[u] = true;
if ( u == T ) return { iflow, 0 };
int oflow = 0, ocost = 0;
for ( int& i = curh[u], v; i; i = graph[i].nxt ) {
if ( ! vis[v = graph[i].to] && d[v] == d[u] + graph[i].cost && graph[i].flow ) {
pii of ( DFS ( v, std::min ( iflow, graph[i].flow ) ) );
oflow += of.first, ocost += of.first * graph[i].cost + of.second;
graph[i].flow -= of.first, graph[i ^ 1].flow += of.first;
if ( ! ( iflow -= of.first ) ) break;
}
}
if ( ! oflow ) d[u] = INF;
return { oflow, ocost };
}
inline bool SPFA () {
static std::queue<int> que;
static bool inq[MAXND + 5];
for ( int i = 0; i <= T; ++ i ) d[i] = INF, inq[i] = false;
que.push ( S ), d[S] = 0, inq[S] = true;
for ( int u; ! que.empty (); ) {
inq[u = que.front ()] = false, que.pop ();
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( d[v = graph[i].to] > d[u] + graph[i].cost && graph[i].flow ) {
d[v] = d[u] + graph[i].cost;
if ( ! inq[v] ) que.push ( v ), inq[v] = true;
}
}
}
return d[T] ^ INF;
}
inline int Dinic () {
int ret = 0;
for ( ; SPFA (); ret += DFS ( S, INF ).second ) {
for ( int i = 0; i <= T; ++ i ) {
vis[i] = false;
curh[i] = head[i];
}
}
return ret;
}
int main () {
scanf ( "%d %d", &n, &K );
for ( int i = 1; i <= n; ++ i ) scanf ( "%d", &a[i] );
for ( int i = 1; i <= n; ++ i ) scanf ( "%d", &c[i] );
S = 0, T = n << 1 | 1;
for ( int i = 1; i <= n; ++ i ) {
addEdge ( S, i, 1, c[a[i]] ), addEdge ( i, i + n, 1, 0 );
if ( las[a[i]] ) addEdge ( i - 1, las[a[i]] + n, 1, -c[a[i]] );
if ( i < n ) addEdge ( i, i + 1, K - 1, 0 );
addEdge ( i + n, T, 1, 0 ), las[a[i]] = i;
}
printf ( "%d\n", Dinic () );
return 0;
}
Solution -「CF 802C」Heidi and Library (hard)的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- C# - 集合差集计算
使用 Except 方法做差集, 结果赋值给 IEnumerable 类 ,这是一个枚举集合类 ,泛型使用对应的类型即可,没办法之间使用count 或 lenght 方法获取,只能循环计算
- Zabbix监控报警Lack of free swap space on Zabbix server解决办法
故障描述: Lack of free swap space on Zabbix server 故障原因: 情况一:云主机:因为Zabbix监控没有考虑虚拟主机的swap分区情况. 情况二:物理主机:说 ...
- 如何向内核提交补丁?——FirstKernelPatch
参考 https://kernelnewbies.org/FirstKernelPatch
- JS里默认和常用转换
* { font-family: PingFang, Monaco } JS里的六大简单数据类型 string 字符类型 number 数字类型 boolean 布尔类型 symbol ES6语法新增 ...
- 使用结构化克隆在 JavaScript 中进行深度复制
在很长一段时间内,您不得不求助于变通方法和库来创建 JavaScript 值的深层副本.现在js提供 「structuredClone()」 一个用于深度复制的内置函数. 浏览器支持: 浅拷贝 在 J ...
- 洛谷 CF196A 题解
题目传送门 题目描述: 读入字符串,求该串的最大字典序子序列. 我的思路: 循环判断只要当前字符比后面所有的字符的字典序大,就把这个字符存到另一个字符串中,最后和输入的字符串循环比较如果该字符和输入时 ...
- 《剑指offer》面试题22. 链表中倒数第k个节点
问题描述 输入一个链表,输出该链表中倒数第k个节点.为了符合大多数人的习惯,本题从1开始计数,即链表的尾节点是倒数第1个节点.例如,一个链表有6个节点,从头节点开始,它们的值依次是1.2.3.4.5. ...
- linux base脚本编写-自动领取微信红包
bash脚本编写 语法 变量 定义: your_name = "ABC" 使用: echo $your_name 只读变量 a = "123" readonly ...
- 【刷题-LeetCode】306. Additive Number
Additive Number Additive number is a string whose digits can form additive sequence. A valid additiv ...
- prometheus基本概念(思维导图)
参考文章: prometheus词汇表 prometheus的summary和histogram指标的简单理解