Note -「矩阵树定理」学习笔记
大概……会很简洁吧 qwq。
矩阵树定理
对于无自环无向图 \(G=(V,E)\),令其度数矩阵 \(D\),邻接矩阵 \(A\),令该图的 \(\text{Kirchhoff}\) 矩阵 \(K=D-A\)。取其任意一个 \(n-1\) 阶主子式 \(K'\),则 \(G\) 的生成树个数 \(s=\det K'\)。
证明先咕掉 qwq。
一些推广
对于有向图以 \(r\) 为根的内向生成树,取 \(D\) 为初度矩阵,取主子式时删去 \(r\) 行 \(r\) 列,再求行列式即可。
外向生成树则相反。
呃……真的好简洁。例题看标签里吧。
Note -「矩阵树定理」学习笔记的更多相关文章
- Note -「Dsu On Tree」学习笔记
前置芝士 树连剖分及其思想,以及优化时间复杂度的原理. 讲个笑话这个东西其实和 Dsu(并查集)没什么关系. 算法本身 Dsu On Tree,一下简称 DOT,常用于解决子树间的信息合并问题. 其实 ...
- 「快速傅里叶变换(FFT)」学习笔记
FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...
- loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积)
loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积) loj 题解时间 首先想到先分开三进制下每一位,然后每一位分别求结果为0,1,2的树的个数. 然后考虑矩阵 ...
- 走进矩阵树定理--「CodePlus 2017 12 月赛」白金元首与独舞
n,m<=200,n*m的方阵,有ULRD表示在这个格子时下一步要走到哪里,有一些待决策的格子用.表示,可以填ULRD任意一个,问有多少种填法使得从每个格子出发都能走出这个方阵,答案取模.保证未 ...
- LG4111/LOJ2122 「HEOI2015」小Z的房间 矩阵树定理
问题描述 LG4111 题解 矩阵树定理板子题. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; #defin ...
- 矩阵树定理&BEST定理学习笔记
终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\ ...
- LOJ #6044 -「雅礼集训 2017 Day8」共(矩阵树定理+手推行列式)
题面传送门 一道代码让你觉得它是道给初学者做的题,然鹅我竟没想到? 首先考虑做一步转化,我们考虑将整棵树按深度奇偶性转化为一张二分图,即将深度为奇数的点视作二分图的左部,深度为偶数的点视作二分图的右部 ...
- 「ExLucas」学习笔记
「ExLucas」学习笔记 前置芝士 中国剩余定理 \(CRT\) \(Lucas\) 定理 \(ExGCD\) 亿点点数学知识 给龙蝶打波广告 Lucas 定理 \(C^m_n = C^{m\% m ...
- 【Java】「深入理解Java虚拟机」学习笔记(1) - Java语言发展趋势
0.前言 从这篇随笔开始记录Java虚拟机的内容,以前只是对Java的应用,聚焦的是业务,了解的只是语言层面,现在想深入学习一下. 对JVM的学习肯定不是看一遍书就能掌握的,在今后的学习和实践中如果有 ...
随机推荐
- [ vue ] xxxProject项目杂记
2020.4.9 加入eCharts 2020.4.8 完成article的显示,其间碰到全局路由守卫写的有错误,导致跳转报错.已修复. 加入keep-alive功能,缓存视图数据 疑问:如果在全局组 ...
- Java复制文件用数据流方法,renameTO()方法是相当于剪切操作
我想达到的效果是,一个文件复制到另一个地方,然后重命名 //判断是否存在 File file = new File("D:/tomcat9.0.12/apache-tomcat-9.0.12 ...
- centos7 常规修改信息(比较杂的)持续更新
修改主机名 临时修改主机名 hostname syscal 永久修改主机名,修改后要重启系统 vi /etc/hostname 修改本地hosts 修改本地hosts,与windows的本地的host ...
- 【Spring专场】「AOP容器」不看源码就带你认识核心流程以及运作原理
前提回顾 前一篇文章主要介绍了spring核心特性机制的IOC容器机制和核心运作原理,接下来我们去介绍另外一个较为核心的功能,那就是AOP容器机制,主要负责承接前一篇代理模式机制中动态代理:JDKPr ...
- 【HarmonyOS】【JS】鸿蒙Js camera怎么拍照并使用image显示出来
官网中有描述camera组件功能界面属性介绍,但是官网没有具体的demo让我们感受拍照的功能,今天写一篇demo来完善一下拍照的功能 demo 功能如下 第一步首先进行拍照功能 第二步 进行js页面跳 ...
- 「DP 浅析」斜率优化
#0.0 屑在前面 将结合经典例题 「HNOI2008」玩具装箱 以及 「NOI2007」货币兑换 进行讲解. #1.0 简述 #1.1 适用情况 斜率优化一般适用于状态转移方程如下的 DP \[f_ ...
- golang中的标准库flag
Go语言内置的flag包实现了命令行参数的解析,flag包使得开发命令行工具更为简单. os.Args 如果你只是简单的想要获取命令行参数,可以像下面的代码示例一样使用os.Args来获取命令行参数. ...
- vue 快速入门 系列 —— 侦测数据的变化 - [vue api 原理]
其他章节请看: vue 快速入门 系列 侦测数据的变化 - [vue api 原理] 前面(侦测数据的变化 - [基本实现])我们已经介绍了新增属性无法被侦测到,以及通过 delete 删除数据也不会 ...
- postgresql安装(windows)
官网: https://www.postgresql.org/ 下载页面:https://www.enterprisedb.com/downloads/postgres-postgresql-down ...
- ddos攻击是什么,如何防御
DDoS(Distributed Denial of Service,分布式拒绝服务) 定义: 主要通过大量合法的请求占用大量网络资源,从而使合法用户无法得到服务的响应,是目前最强大.最难防御的攻击之 ...