本文将同步发布于:

题目

题目链接:洛谷 P3428官网

题意简述

给定 \(n\) 个圆 \((x_i,y_i,r_i)\),每个圆对应一个点集 \(S_i=\left\{(x,y)\mid (x-x_i)^2+(y-y_i)^2\leq r_i^2\right\}\)。

求一个最小的 \(i\) 满足 \(\cap_{j=1}^i S_j=\varnothing\);如果无解输出 NIE

题解

简单又自然的随机化

我们考虑枚举 \(i\),然后判定 \(S_{1\sim i}\) 的交集是否为空。

如何判定呢?我们想到一个简单的方法,我们随机一些在圆的边界上的点,只需要判定这些点是否存至少在一个点在所有圆内即可。

这种方法简单又自然,但是随机化算法正确率不高,这远远不够。

研究几何性质

如果做计算几何题而抛弃几何性质,所得到的做法往往是劣解。

继续沿着上面的思路,我们同样考虑枚举 \(i\),然后判定 \(S_{1\sim i}\) 的交集是否为空。

不同的是,我们定义一个交集中横坐标最大的点为代表点(代表点只会有一个,这是因为圆是凸集,凸集的交集还是凸集)。

我们发现,如果一些圆的交集非空,那么其代表点一定满足:它是所有圆两两交集的代表中横坐标最小的那个。

证明十分显然,考虑交集的意义即可。

最后的结论

综上所述,对于一个 \(i\),我们只需要求出 \(1\sim i-1\) 与 \(i\) 的代表点即可,如果所有代表点中横坐标最小的那一个在所有的圆内,那么其合法,否则不合法,换言之,答案为 \(i\)。

我们考虑证明这个结论:

  • 若没有交集,则这个点必然不合法,符合我们的预期;
  • 若有交集,则我们需要证明这个点是交集的代表点。
    • 假设其不是交集的代表点,则交集的代表点可能在其左右;
    • 左边:不可能,若交集存在,则代表点的横坐标 \(\geq\) 当前点横坐标。
    • 右边:不可能,考虑当前点在 \(S_a\cap S_b\) 中得到,那么所有 \(x\geq\) 当前点横坐标的点均被交集抛弃,因此代表点的横坐标 \(\leq\) 当前点横坐标。
    • 由夹逼过程可知结论正确。

这个算法的时间复杂度为 \(\Theta(n^2)\)。

参考程序

下面我们来解决两圆求交的问题。

下面介绍一下两种方法:余弦定理和相似三角形。

余弦定理

用余弦定理求解需要用到三角函数,常数大,精度差。

我们考虑下图:

对 \(\triangle{ACB}\) 运用余弦定理,得到 \(r_a^2+d^2-2dr_a\cos\alpha=r_b^2\),进而求出 \(\alpha=\arccos\left(\frac{r_a^2+d^2-r_b2}{2dr_a}\right)\)。

然后我们再求出基准角 \(\beta\),显然 \(\beta=\texttt{atan2}(y_b-y_a,x_b-x_a)\)。

因此,我们得到了 \(C,D\) 两点的对 \(A\) 的极角为 \(\beta+\alpha\),\(\beta-\alpha\)。

对于极角为 \(\theta\),极径为 \(r_a\) 的点,我们得出其对应点的坐标为 \((r_a\cos\theta,r_a\sin\theta)\)。

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll; const double eps=1e-6; inline int sgn(reg double x){
if(fabs(x)<eps)
return 0;
else
return x<0?-1:1;
} inline double sqr(reg double x){
return x*x;
} const int MAXN=2e3+5; struct Vector{
double x,y;
inline Vector(reg double x=0,reg double y=0):x(x),y(y){
return;
}
inline Vector operator+(const Vector& a)const{
return Vector(x+a.x,y+a.y);
}
inline Vector operator-(const Vector& a)const{
return Vector(x-a.x,y-a.y);
}
inline Vector operator*(const double a)const{
return Vector(x*a,y*a);
}
}; inline double dot(const Vector& a,const Vector& b){
return a.x*b.x+a.y*b.y;
} inline double cross(const Vector& a,const Vector& b){
return a.x*b.y-a.y*b.x;
} typedef Vector Point; inline double getDis2(const Point& a,const Point& b){
return dot(a-b,a-b);
} inline double getDis(const Point& a,const Point& b){
return sqrt(getDis2(a,b));
} inline bool isEmpty(const Point& a){
return a.x!=a.x||a.y!=a.y;
} struct Circle{
Point o;
double r;
inline bool contain(const Point& x)const{
return sgn(sqr(r)-getDis2(x,o))>=0;
}
inline Point getRig(void)const{
return o+Vector(r,0);
}
}; inline bool isCon(const Circle& a,const Circle& b){
return sgn(sqr(a.r-b.r)-getDis2(a.o,b.o))>=0;
} inline bool isSep(const Circle& a,const Circle& b){
return sgn(getDis2(a.o,b.o)-sqr(a.r+b.r))>0;
} inline Point getPot(const Circle &a,const Circle &b){
if(isCon(a,b))
if(sgn(b.getRig().x-a.getRig().x)>0)
return a.getRig();
else
return b.getRig();
else if(isSep(a,b))
return Point(nan(""),nan(""));
else{
if(a.contain(b.getRig()))
return b.getRig();
else if(b.contain(a.getRig()))
return a.getRig();
else{
reg double d=getDis(a.o,b.o);
reg double ang=acos(((sqr(a.r)+sqr(d))-sqr(b.r))/(2*a.r*d));
reg double delta=atan2(b.o.y-a.o.y,b.o.x-a.o.x);
reg double ang1=delta+ang,ang2=delta-ang;
Point p1=a.o+Vector(cos(ang1)*a.r,sin(ang1)*a.r);
Point p2=a.o+Vector(cos(ang2)*a.r,sin(ang2)*a.r);
Point res;
if(sgn(p2.x-p1.x)>0)
res=p2;
else
res=p1;
return res;
}
}
} int n;
Circle a[MAXN]; int main(void){
scanf("%d",&n);
Point lef(0,0);
for(reg int i=1;i<=n;++i){
static int x,y,r;
scanf("%d%d%d",&x,&y,&r);
a[i].o=Point(x,y),a[i].r=r;
if(i==2)
lef=getPot(a[1],a[2]);
else if(i>2){
for(reg int j=1;j<i&&!isEmpty(lef);++j){
Point tmp=getPot(a[i],a[j]);
if(isEmpty(tmp)||tmp.x<=lef.x)
lef=tmp;
}
for(reg int j=1;j<=i&&!isEmpty(lef);++j)
if(!a[j].contain(lef))
lef=Point(nan(""),nan(""));
}
if(isEmpty(lef)){
printf("%d\n",i);
return 0;
}
}
puts("NIE");
return 0;
}

相似三角形

如上图,我们设 \(a=|AG|\),\(b=|BG|\),\(h=|CG|\)。

那么我们有:

\[\begin{cases}r_a^2=a^2+h^2\\r_b^2=b^2+h^2\\a+b=d\end{cases}
\]

那么我们有:

\[a=\frac{r_a^2+d^2-r_b^2}{2d}
\]

然后考虑 \(\triangle AIB\sim\triangle CHG\),我们有:

\[(y_b-y_a)h=d(y_c-y_g)
\]

我们可由此解出坐标,其他同理可算出。

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll; const double eps=1e-6; inline int sgn(reg double x){
if(fabs(x)<eps)
return 0;
else
return x<0?-1:1;
} inline double sqr(reg double x){
return x*x;
} const int MAXN=2e3+5; struct Vector{
double x,y;
inline Vector(reg double x=0,reg double y=0):x(x),y(y){
return;
}
inline Vector operator+(const Vector& a)const{
return Vector(x+a.x,y+a.y);
}
inline Vector operator-(const Vector& a)const{
return Vector(x-a.x,y-a.y);
}
inline Vector operator*(const double a)const{
return Vector(x*a,y*a);
}
}; inline double dot(const Vector& a,const Vector& b){
return a.x*b.x+a.y*b.y;
} inline double cross(const Vector& a,const Vector& b){
return a.x*b.y-a.y*b.x;
} typedef Vector Point; inline double getDis2(const Point& a,const Point& b){
return dot(a-b,a-b);
} inline double getDis(const Point& a,const Point& b){
return sqrt(getDis2(a,b));
} inline bool isEmpty(const Point& a){
return isnan(a.x)||isnan(a.y);
} struct Circle{
Point o;
double r;
inline bool contain(const Point& x)const{
return sgn(sqr(r)-getDis2(x,o))>=0;
}
inline Point getRig(void)const{
return o+Vector(r,0);
}
}; inline bool isCon(const Circle& a,const Circle& b){
return sgn(sqr(a.r-b.r)-getDis2(a.o,b.o))>=0;
} inline bool isSep(const Circle& a,const Circle& b){
return sgn(getDis2(a.o,b.o)-sqr(a.r+b.r))>0;
} inline Point getPot(const Circle &a,const Circle &b){
if(isCon(a,b))
if(sgn(b.getRig().x-a.getRig().x)>0)
return a.getRig();
else
return b.getRig();
else if(isSep(a,b))
return Point(nan(""),nan(""));
else{
if(a.contain(b.getRig()))
return b.getRig();
else if(b.contain(a.getRig()))
return a.getRig();
else{
reg double d=getDis(a.o,b.o);
reg double val=(sqr(a.r)+sqr(d)-sqr(b.r))/(2*d);
reg double h=sqrt(sqr(a.r)-sqr(val));
Point bas=a.o+(b.o-a.o)*(val/d);
Vector tmp=Vector(b.o.y-a.o.y,a.o.x-b.o.x)*(h/d);
Point p1=bas-tmp,p2=bas+tmp;
if(sgn(p2.x-p1.x)>0)
return p2;
else
return p1;
}
}
} int n;
Circle a[MAXN]; int main(void){
scanf("%d",&n);
Point lef(0,0);
for(reg int i=1;i<=n;++i){
static int x,y,r;
scanf("%d%d%d",&x,&y,&r);
a[i].o=Point(x,y),a[i].r=r;
if(i==2)
lef=getPot(a[1],a[2]);
else if(i>2){
for(reg int j=1;j<i&&!isEmpty(lef);++j){
Point tmp=getPot(a[i],a[j]);
if(isEmpty(tmp)||tmp.x<=lef.x)
lef=tmp;
}
for(reg int j=1;j<=i&&!isEmpty(lef);++j)
if(!a[j].contain(lef))
lef=Point(nan(""),nan(""));
}
if(isEmpty(lef)){
printf("%d\n",i);
return 0;
}
}
puts("NIE");
return 0;
}

「题解」POI2005 AKC-Special Forces Manoeuvres的更多相关文章

  1. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  2. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  5. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  6. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  7. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  8. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

  9. 「题解」:x

    问题 A: x 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 赛时想到了正解并且对拍了很久.对拍没挂,但是评测姬表示我w0了……一脸懵逼. 不难证明,如果对于两个数字 ...

随机推荐

  1. UVA11388GCD LCM

    题意:       输入两个整数G,L,找出两个正整数a,b使得gcd(a ,b)=G,lcm(a ,b)=L,如果有多组解,输出最小的a的那组,如果没解,输出-1. 思路:       比较简单,如 ...

  2. 手动添加导入表修改EXE功能

    目标: 改动PE导入表,手工给HelloWorld增加一个功能,就是启动的时候写入一条开机启动项,C:\cmd0000000000000000000000000000.exe 实现方法: 直接在注册相 ...

  3. Bugku-flag.php

    flag.php 目录 flag.php 题目描述 解题过程 题目描述 点了login咋没反应 提示:hint 解题过程 fuzz 打开发现是个登录页面,点击login没反应,看了源码,action= ...

  4. android之布局优化

    android中提供了<include />.<merge />.<ViewStub />三种优化布局. 1.<include /> <inclu ...

  5. 【mybatis】mybatis分页拦截器搭配bootstrap-table使用

    提前说明: 这一种方式已被我自己pass掉了,已经被新的方式迭代了.但是记录下自己曾经的成果还是有必要的,而且里面的思想还是不变的,另外技术不就是在不断地迭代中升级吗.千万不要想着一步完美,那样会让你 ...

  6. Matlab将数据存为文本文件

    dlmwrite :将一个矩阵写到由分隔符分割的文件中. 在保存整数到文件时使用save存为ascii文件时,常常是文件里都是实型格式的数据(有小数点,和后面很多的0,看着很不方便).于是要保存此类数 ...

  7. [CSS属性设置,盒子模型,网页布局]

    [CSS属性设置,盒子模型,网页布局] CSS属性设置 1. 宽和高 width:属性可以为元素设置宽度. height:属性可以为元素设置高度. 块级标签的宽度不修改的情况下默认占浏览器的一整行,块 ...

  8. Objective-C 中不带加减号的方法

    显而易见的事实是,Objective-C 中,+ 表示类方法,- 表示实例方法. 但看别人代码过程中,还会发现一种,不带加减号的方法. @implementation MyViewController ...

  9. 【转载】linux-查询rpm包相关安装、卸载脚本

        测试过程中,有时要测试开发自己打的rpm包,为了确认打包正确,需要查询rpm包相关安装.卸载脚本,可以使用命令:   [root@6 /]#rpm -q --scripts mysql pos ...

  10. 电脑无法开机,用一个U盘先备份C盘部分重要文件并重装Win10系统的教程?

    电脑无法开机,用一个U盘先备份C盘部分重要文件并重装Win10系统的教程.? 这应该是修电脑的万能方法,重装系统能解决绝大多数非硬件导致的电脑故障,但之前要备份一下桌面的一些个人文件.所以想学一下,以 ...