引言

好久没写文章了,今天回来重操旧业。

今天讲的这个主题,是《面试官:谈谈你对mysql索引的认识》,里头提到的一个坑。

也就是说,如果面试官问的是,为什么Mysql中Innodb的索引结构采取B+树?这个问题时,给自己留一条后路,不要把B树喷的一文不值。因为网上有些答案是说,B树不适合做文件存储系统的索引结构。如果按照那种答法,自己就给自己挖了一个坑,很难收场。因此,就有了这篇文章的诞生~

正文

这里的Mysql指的是Innodb的存储引擎下的索引结构,其他存储引擎我们暂时不讨论。

B树和B+树

开头,我们先回忆一下,B树和B+树的结构以及特点,如下所示:

B树

注意一下B树的两个明显特点

  • 树内的每个节点都存储数据
  • 叶子节点之间无指针相邻

B+树

注意一下B+树的两个明显特点

  • 数据只出现在叶子节点
  • 所有叶子节点增加了一个链指针

针对上面的B+树和B树的特点,我们做一个总结

(1)B树的树内存储数据,因此查询单条数据的时候,B树的查询效率不固定,最好的情况是O(1)。我们可以认为在做单一数据查询的时候,使用B树平均性能更好。但是,由于B树中各节点之间没有指针相邻,因此B树不适合做一些数据遍历操作。

(2)B+树的数据只出现在叶子节点上,因此在查询单条数据的时候,查询速度非常稳定。因此,在做单一数据的查询上,其平均性能并不如B树。但是,B+树的叶子节点上有指针进行相连,因此在做数据遍历的时候,只需要对叶子节点进行遍历即可,这个特性使得B+树非常适合做范围查询。

因此,我们可以做一个推论:没准是Mysql中数据遍历操作比较多,所以用B+树作为索引结构。而Mongodb是做单一查询比较多,数据遍历操作比较少,所以用B树作为索引结构。

那么为什么Mysql做数据遍历操作多?而Mongodb做数据遍历操作少呢?

因为Mysql是关系型数据库,而Mongodb是非关系型数据。

那为什么关系型数据库,做数据遍历操作多?

而非关系型数据库,做数据遍历操作少呢?

我们继续往下看

关系型VS非关系型

假设,我们此时有两个逻辑实体:学生(Student)和班级(Class),这两个逻辑实体之间是一对多的关系。毕竟一个班级有多个学生,一个学生只能属于一个班级。

关系型数据库

我们在关系型数据库中,考虑的是用几张表来表示这二者之间的实体关系。常见的无外乎是,一对一关系,用一张表就行。一对多关系,用两张表。多对多关系,用三张表。

那这里,我们需要用两张表表示二者之间逻辑关系,如下所示

那我们,此时要查cname为1班的班级,有多少学生怎么办?

假设cname这列,我们建了索引!

执行SQL,如下所示!

而这,就涉及到了数据遍历操作!

因为但凡做这种关联查询,你躲不开join操作的!既然涉及到了join操作,无外乎从一个表中取一个数据,去另一个表中逐行匹配,如果索引结构是B+树,叶子节点上是有指针的,能够极大的提高这种一行一行的匹配速度!

有的人或许会抬杠说,如果我先执行

就可以避开join操作呀?

对此,我想说。你确实避开了join操作,但是你数据遍历操作还是没避开。你还是需要在student的这张表的叶子节点上,一遍又一遍的遍历!

那在非关系型数据库中,我们如何查询cname为1班的班级,有多少学生?

非关系型数据库

有人说,你可以这么设计?也就是弄两个集合如下所示

然后,执行两次查询去获得结果!一次去class集合查,获得id后再去student集合查。

确实,这么设计是可以的,我没说不行。只是不符合非关系型数据库的设计初衷。在MongoDB中,根本不推荐这么设计。虽然,Mongodb中有一个$lookup操作,可以做join查询。但是理想情况下,这个$lookup操作应该不会经常使用,如果你需要经常使用它,那么你就使用了错误的数据存储了(数据库):如果你有相关联的数据,应该使用关系型数据库(SQL)。

因此,正规的设计应该如下

假设name这列,我们建了索引!

我只需执行一次语句

db.class.find( { name: '1班' } )

这样就能查询出自己想要的结果。

而这,就是一种单一数据查询!毕竟你不需要去逐行匹配,不涉及遍历操作,幸运的情况下,有可能一次IO就能够得到你想要的结果。

因此,由于关系型数据库和非关系型数据的设计方式上的不同。导致在关系型数据中,遍历操作比较常见,因此采用B+树作为索引,比较合适。而在非关系型数据库中,单一查询比较常见,因此采用B树作为索引,比较合适。

面试套路

目前套路有如下几种

套路一

你简历写了mysql,没写mongodb!

面试官:"说说mysql索引结构?"

我:"巴拉巴拉"

面试官:"知道为什么用B+树,不用B树么?"

这个时候正常的面试者就蒙了,会把B树的缺点喷一通!于是乎下一问就是

面试官:"其实一些非关系型数据库,如mongodb用的就是B树,你知道原因么?"

然后你就回去等通知了!

套路二

你简历写了mysql,也写了mongodb!

这种情况更完美!

面试官:"说说mysql索引结构?"

我:"巴拉巴拉"

面试官:"你简历写了Mongodb,有了解过他的索引结构么?"

我:"巴拉巴拉"

面试官:"为什么Mongodb索引用B树,而Mysql用B+树?"

然后你就回去等通知了!

套路三

你简历既没写mysql,没写mongodb!

面试官;"如果你来设计数据库,你会对他的索引用什么数据结构?"

我:"首先不考虑红黑树这类,巴拉巴拉…应该会用B树或者B+树。"

面试官;“如果我要设计一个像Mongodb那样的非关系型数据库,我要用什么数据结构当索引比较合适?”

然后你就可以回去等通知了!

上面三个套路都是真实存在的!总之,只要面试官想问这个问题,都可以绕到这个问题上去!

总结

其实这篇文章很早以前就想写,后来一直耽搁着。今天有时间刚好补上,希望大家有所收获。

为什么Mongodb索引用B树,而Mysql用B+树?的更多相关文章

  1. 【原创】为什么Mongodb索引用B树,而Mysql用B+树?

    引言 好久没写文章了,今天回来重操旧业.毕竟现在对后端开发的要求越来越高,大家要做好各种准备. 因此,大家有可能遇到如下问题 为什么Mysql中Innodb的索引结构采取B+树? 回答这个问题时,给自 ...

  2. 为什么 MongoDB (索引)使用B-树而 Mysql 使用 B+树

    B-树由来 定义:B-树是一类树,包括B-树.B+树.B*树等,是一棵自平衡的搜索树,它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点.B-树是专门为外部存储器设计的,如磁盘,它对 ...

  3. mongodb,redis,memcached,mysql对比

    1.性能都比较高,性能对我们来说应该都不是瓶颈总体来讲,TPS方面redis和memcache差不多,要大于mongodb 2.操作的便利性memcache数据结构单一redis丰富一些,数据操作方面 ...

  4. 为什么 MySQL 使用 B+ 树

    为什么 MySQL 使用 B+ 树是面试中经常会出现的问题,很多人对于这个问题可能都有一些自己的理解,但是多数的回答都不够完整和准确,大多数人都只会简单说一下 B+ 树和 B 树的区别,但是都没有真正 ...

  5. 如何将MongoDB数据库的数据迁移到MySQL数据库中

    FAQ v2.0终于上线了,断断续续忙了有2个多月.这个项目是我实践的第一个全栈的项目,从需求(后期有产品经理介入)到架构,再到设计(有征询设计师的意见).构建(前端.后台.数据库.服务器部署),也是 ...

  6. MySQL的B树索引与索引优化

    MySQL的MyISAM.InnoDB引擎默认均使用B+树索引(查询时都显示为"BTREE"),本文讨论两个问题: 为什么MySQL等主流数据库选择B+树的索引结构? 如何基于索引 ...

  7. SQL优化 MySQL版 - B树索引详讲

    SQL优化 MySQL版  - -B树索引详讲 作者:Stanley 罗昊 [转载请注明出处和署名,谢谢!] 为什么要进行SQL优化呢?很显然,当我们去写sql语句时: 1会发现性能低 2.执行时间太 ...

  8. 搞懂MySQL InnoDB B+树索引

    一.InnoDB索引 InnoDB支持以下几种索引: B+树索引 全文索引 哈希索引 本文将着重介绍B+树索引.其他两个全文索引和哈希索引只是做简单介绍一笔带过. 哈希索引是自适应的,也就是说这个不能 ...

  9. MySQL和B树的那些事

    一.零铺垫 在介绍B树之前,先来看另一棵神奇的树——二叉排序树(Binary Sort Tree),首先它是一棵树,“二叉”这个描述已经很明显了,就是树上的一根树枝开两个叉,于是递归下来就是二叉树了( ...

随机推荐

  1. windows 7系统封装总结

    win7系统封装总结 需求:对于个人家庭用户,网上下载原版镜像或者下载好别人封装好的系统都无所谓,但是在公司办公的特殊环境下, 有时需要经常装一些特殊的软件,根据实际情况,封装一个适合本公司使用环境的 ...

  2. 《前端运维》一、Linux基础--02用户与权限

    其实说真的,这些基础挺枯燥的,内容呢绝大多数都是些静态的. 上一篇文章我们学习了基本的指令和vim编辑器的操作方法.这篇文章我们主要来学习下Linux中用户的概念和权限相关的知识. 一.用户与用户组 ...

  3. ssh-的搭建和使用

    ssh的作用 : 可实现远程客户端登录服务器并对服务器的文件进行操作 ssh服务器的安装 farsight@ubuntu:~$ sudo apt-get install openssh-server ...

  4. [DB] Spark SQL

    概述 基于Spark,兼容Hive 集成在Spark中,不需单独安装 提供统一的数据访问方式 结构化的数据类型:JDBC.JSON.Hive.Parquet(Saprk SQL 默认数据源) 支持标准 ...

  5. sed 's/AA/BB/' file # 将文件中的AA替换成BB,只替换一行中第一次出现的AA,替换后的结果输出到屏幕 sed 's/AA/BB/g' file # 将文件中的所有AA都替换成BB,替换后的结果输出到屏幕

    生信人的自我修养:Linux命令速查手册 简佐义 ​ 四川大学 生物信息学硕士 科学求真 赢 10 万奖金 · 院士面对面 209 人赞同了该文章 许多人做生物信息学,要么不重视Linux,要么不知道 ...

  6. CAD中解决打印图纸模糊而且有的字体深浅不一的方法

    按圈圈中选择打印样式

  7. TB6560步进电机驱动板

    极客工坊比较好的帖子: 关于驱动板的共阴极和共阳极接法 http://www.geek-workshop.com/thread-12695-1-1.html

  8. 解决Windows路径太长的目录以及文件名超长删除的问题

    因Windows文件夹有长度限制,在路径太深,长度达到600多个字符时,删除文件时出现报错"源文件名长度大于文件系统支持的长度.请尝试将其移动到具有较短路径名称的位置,或者在执行此操作前尝试 ...

  9. echart实例

    https://www.makeapie.com/explore.html#sort=rank~timeframe=all~author=all

  10. 【Microstation】三维建模基础及软件入门到精通实验教程目录

    @ 目录 1. 专栏简介 2. 专栏地址 3. 专栏目录 1. 专栏简介 MicroStation是一款非常不错的二维和三维设计软件,由奔特力(Bentley)工程软件系统有限公司开发的一款软件.在C ...