转自:http://blog.csdn.net/pelick/article/details/8299482

//Hadoop基础

Doug Cutting所创立的项目的名称都受到其家人的启发,以下项目不是由他创立的项目是

A. Hadoop

B. Nutch

C. Lucene

D. Solr

答案:D





配置Hadoop时,JAVA_HOME包含在哪一个配置文件中

A. hadoop-default.xml

B. hadoop-env.sh

C. hadoop-site.xml

D. configuration.xsl

答案:B

知识点:hadoop配置





Hadoop配置文件中,hadoop-site.xml显示覆盖hadoop-default.xml里的内容。在版本0.20中,hadoop-site.xml被分离成三个XML文件,不包括

A. conf-site.xml

B. mapred-site.xml

C. core-site.xml

D. hdfs-site.xml

答案:A

知识点:hadoop配置





HDFS默认的当前工作目录是/user/$USER,fs.default.name的值需要在哪个配置文件内说明

A. mapred-site.xml

B. core-site.xml

C. hdfs-site.xml

D. 以上均不是

答案:B

知识点:hadoop配置





关于Hadoop单机模式和伪分布式模式的说法,正确的是

A. 两者都起守护进程,且守护进程运行在一台机器上

B. 单机模式不使用HDFS,但加载守护进程

C. 两者都不与守护进程交互,避免复杂性

D. 后者比前者增加了HDFS输入输出以及可检查内存使用情况

答案:D

知识点:hadoop配置





下列关于Hadoop API的说法错误的是

A. Hadoop的文件API不是通用的,只用于HDFS文件系统

B. Configuration类的默认实例化方法是以HDFS系统的资源配置为基础的

C. FileStatus对象存储文件和目录的元数据

D. FSDataInputStream是java.io.DataInputStream的子类

答案:A





//HDFS

HDFS的NameNode负责管理文件系统的命名空间,将所有的文件和文件夹的元数据保存在一个文件系统树中,这些信息也会在硬盘上保存成以下文件:

A.日志

B.命名空间镜像

C.两者都是

答案:C

知识点:





HDFS的namenode保存了一个文件包括哪些数据块,分布在哪些数据节点上,这些信息也存储在硬盘上。

A.正确

B.错误

答案:B

知识点:在系统启动的时候从数据节点收集而成的





Secondary namenode就是namenode出现问题时的备用节点

A.正确

B.错误

答案:B

知识点:它和元数据节点负责不同的事情。其主要功能就是周期性将元数据节点的命名空间镜像文件和修改日志合并,以防日志文件过大。合并过后的命名空间镜像文件也在Secondary namenode保存了一份,以防namenode失败的时候,可以恢复。





出现在datanode的VERSION文件格式中但不出现在namenode的VERSION文件格式中的是

A. namespaceID

B. storageID

C. storageType

D. layoutVersion

答案:B

知识点:其他三项是公有的。layoutVersion是一个负整数,保存了HDFS的持续化在硬盘上的数据结构的格式版本号;namespaceID是文件系统的唯一标识符,是在文件系统初次格式化时生成的;storageType表示此文件夹中保存的是数据节点的类型





Client在HDFS上进行文件写入时,namenode根据文件大小和配置情况,返回部分datanode信息,谁负责将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块

A. Client

B. Namenode

C. Datanode

D. Secondary namenode

答案:A

知识点:HDFS文件写入





HDFS的是基于流数据模式访问和处理超大文件的需求而开发的,默认的最基本的存储单位是64M,具有高容错、高可靠性、高可扩展性、高吞吐率等特征,适合的读写任务是

A.一次写入,少次读写

B.多次写入,少次读写

C.一次写入,多次读写

D.多次写入,多次读写

答案:C

知识点:HDFS特性





HDFS无法高效存储大量小文件,想让它能处理好小文件,比较可行的改进策略不包括

A. 利用SequenceFile、MapFile、Har等方式归档小文件

B. 多Master设计

C. Block大小适当调小

D. 调大namenode内存或将文件系统元数据存到硬盘里

答案:D

知识点:HDFS特性





关于HDFS的文件写入,正确的是

A. 支持多用户对同一文件的写操作

B. 用户可以在文件任意位置进行修改

C. 默认将文件块复制成三份存放

D. 复制的文件块默认都存在同一机架上

答案:C

知识点:在HDFS的一个文件中只有一个写入者,而且写操作只能在文件末尾完成,即只能执行追加操作。默认三份文件块两块在同一机架上,另一份存放在其他机架上。





Hadoop fs中的-get和-put命令操作对象是

A. 文件

B. 目录

C. 两者都是

答案:C

知识点:HDFS命令





Namenode在启动时自动进入安全模式,在安全模式阶段,说法错误的是

A. 安全模式目的是在系统启动时检查各个DataNode上数据块的有效性

B. 根据策略对数据块进行必要的复制或删除

C. 当数据块最小百分比数满足的最小副本数条件时,会自动退出安全模式

D. 文件系统允许有修改

答案:D

知识点:HDFS安全模式





//MapReduce

MapReduce框架提供了一种序列化键/值对的方法,支持这种序列化的类能够在Map和Reduce过程中充当键或值,以下说法错误的是

A. 实现Writable接口的类是值

B. 实现WritableComparable<T>接口的类可以是值或键

C. Hadoop的基本类型Text并不实现WritableComparable<T>接口

D. 键和值的数据类型可以超出Hadoop自身支持的基本类型

答案:C





以下四个Hadoop预定义的Mapper实现类的描述错误的是

A. IdentityMapper<K, V>实现Mapper<K, V, K, V>,将输入直接映射到输出

B. InverseMapper<K, V>实现Mapper<K, V, K, V>,反转键/值对

C. RegexMapper<K>实现Mapper<K, Text, Text, LongWritable>,为每个常规表达式的匹配项生成一个(match, 1)对

D. TokenCountMapper<K>实现Mapper<K, Text, Text, LongWritable>,当输入的值为分词时,生成(taken, 1)对

答案:B

知识点:InverseMapper<K, V>实现Mapper<K, V, V, K>





下列关于HDFS为存储MapReduce并行切分和处理的数据做的设计,错误的是

A. FSDataInputStream扩展了DataInputStream以支持随机读

B. 为实现细粒度并行,输入分片(Input Split)应该越小越好

C. 一台机器可能被指派从输入文件的任意位置开始处理一个分片

D. 输入分片是一种记录的逻辑划分,而HDFS数据块是对输入数据的物理分割

答案:B

知识点:每个分片不能太小,否则启动与停止各个分片处理所需的开销将占很大一部分执行时间





针对每行数据内容为”Timestamp Url”的数据文件,在用JobConf对象conf设置conf.setInputFormat(WhichInputFormat.class)来读取这个文件时,WhichInputFormat应该为以下的

A. TextInputFormat

B. KeyValueTextInputFormat

C. SequenceFileInputFormat

D. NLineInputFormat

答案:B

知识点:四项主要的InputFormat类。KeyValueTextInputFormat以每行第一个分隔符为界,分隔符前为key,之后为value,默认制表符为\t





有关MapReduce的输入输出,说法错误的是

A. 链接多个MapReduce作业时,序列文件是首选格式

B. FileInputFormat中实现的getSplits()可以把输入数据划分为分片,分片数目和大小任意定义

C. 想完全禁止输出,可以使用NullOutputFormat

D. 每个reduce需将它的输出写入自己的文件中,输出无需分片

答案:B

知识点:分片数目在numSplits中限定,分片大小必须大于mapred.min.size个字节,但小于文件系统的块





Hadoop Streaming支持脚本语言编写简单MapReduce程序,以下是一个例子:

bin/hadoop jar contrib/streaming/hadoop-0.20-streaming.jar

  —input input/filename

  —output output

  —mapper ‘dosth.py 5’

  —file dosth.py

  —D mapred.reduce.tasks=1

以下说法不正确的是

A. Hadoop Streaming使用Unix中的流与程序交互

B. Hadoop Streaming允许我们使用任何可执行脚本语言处理数据流

C. 采用脚本语言时必须遵从UNIX的标准输入STDIN,并输出到STDOUT

D. Reduce没有设定,上述命令运行会出现问题

答案:D

知识点:没有设定特殊的reducer,默认使用IdentityReducer





在高阶数据处理中,往往无法把整个流程写在单个MapReduce作业中,下列关于链接MapReduce作业的说法,不正确的是

A.Job和JobControl类可以管理非线性作业之间的依赖

B.ChainMapper和ChainReducer类可以用来简化数据预处理和后处理的构成

C.使用ChainReducer时,每个mapper和reducer对象都有一个本地JobConf对象

D.ChainReducer.addMapper()方法中,一般对键/值对发送设置成值传递,性能好且安全性高

答案:D

知识点:ChainReducer.addMapper()方法中,值传递安全性高,引用传递性能高









//源码分析





//Zookeeper

转自:http://blog.csdn.net/pelick/article/details/8299482

//Hadoop基础

Doug Cutting所创立的项目的名称都受到其家人的启发,以下项目不是由他创立的项目是

A. Hadoop

B. Nutch

C. Lucene

D. Solr

答案:D





配置Hadoop时,JAVA_HOME包含在哪一个配置文件中

A. hadoop-default.xml

B. hadoop-env.sh

C. hadoop-site.xml

D. configuration.xsl

答案:B

知识点:hadoop配置





Hadoop配置文件中,hadoop-site.xml显示覆盖hadoop-default.xml里的内容。在版本0.20中,hadoop-site.xml被分离成三个XML文件,不包括

A. conf-site.xml

B. mapred-site.xml

C. core-site.xml

D. hdfs-site.xml

答案:A

知识点:hadoop配置





HDFS默认的当前工作目录是/user/$USER,fs.default.name的值需要在哪个配置文件内说明

A. mapred-site.xml

B. core-site.xml

C. hdfs-site.xml

D. 以上均不是

答案:B

知识点:hadoop配置





关于Hadoop单机模式和伪分布式模式的说法,正确的是

A. 两者都起守护进程,且守护进程运行在一台机器上

B. 单机模式不使用HDFS,但加载守护进程

C. 两者都不与守护进程交互,避免复杂性

D. 后者比前者增加了HDFS输入输出以及可检查内存使用情况

答案:D

知识点:hadoop配置





下列关于Hadoop API的说法错误的是

A. Hadoop的文件API不是通用的,只用于HDFS文件系统

B. Configuration类的默认实例化方法是以HDFS系统的资源配置为基础的

C. FileStatus对象存储文件和目录的元数据

D. FSDataInputStream是java.io.DataInputStream的子类

答案:A





//HDFS

HDFS的NameNode负责管理文件系统的命名空间,将所有的文件和文件夹的元数据保存在一个文件系统树中,这些信息也会在硬盘上保存成以下文件:

A.日志

B.命名空间镜像

C.两者都是

答案:C

知识点:





HDFS的namenode保存了一个文件包括哪些数据块,分布在哪些数据节点上,这些信息也存储在硬盘上。

A.正确

B.错误

答案:B

知识点:在系统启动的时候从数据节点收集而成的





Secondary namenode就是namenode出现问题时的备用节点

A.正确

B.错误

答案:B

知识点:它和元数据节点负责不同的事情。其主要功能就是周期性将元数据节点的命名空间镜像文件和修改日志合并,以防日志文件过大。合并过后的命名空间镜像文件也在Secondary namenode保存了一份,以防namenode失败的时候,可以恢复。





出现在datanode的VERSION文件格式中但不出现在namenode的VERSION文件格式中的是

A. namespaceID

B. storageID

C. storageType

D. layoutVersion

答案:B

知识点:其他三项是公有的。layoutVersion是一个负整数,保存了HDFS的持续化在硬盘上的数据结构的格式版本号;namespaceID是文件系统的唯一标识符,是在文件系统初次格式化时生成的;storageType表示此文件夹中保存的是数据节点的类型





Client在HDFS上进行文件写入时,namenode根据文件大小和配置情况,返回部分datanode信息,谁负责将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块

A. Client

B. Namenode

C. Datanode

D. Secondary namenode

答案:A

知识点:HDFS文件写入





HDFS的是基于流数据模式访问和处理超大文件的需求而开发的,默认的最基本的存储单位是64M,具有高容错、高可靠性、高可扩展性、高吞吐率等特征,适合的读写任务是

A.一次写入,少次读写

B.多次写入,少次读写

C.一次写入,多次读写

D.多次写入,多次读写

答案:C

知识点:HDFS特性





HDFS无法高效存储大量小文件,想让它能处理好小文件,比较可行的改进策略不包括

A. 利用SequenceFile、MapFile、Har等方式归档小文件

B. 多Master设计

C. Block大小适当调小

D. 调大namenode内存或将文件系统元数据存到硬盘里

答案:D

知识点:HDFS特性





关于HDFS的文件写入,正确的是

A. 支持多用户对同一文件的写操作

B. 用户可以在文件任意位置进行修改

C. 默认将文件块复制成三份存放

D. 复制的文件块默认都存在同一机架上

答案:C

知识点:在HDFS的一个文件中只有一个写入者,而且写操作只能在文件末尾完成,即只能执行追加操作。默认三份文件块两块在同一机架上,另一份存放在其他机架上。





Hadoop fs中的-get和-put命令操作对象是

A. 文件

B. 目录

C. 两者都是

答案:C

知识点:HDFS命令





Namenode在启动时自动进入安全模式,在安全模式阶段,说法错误的是

A. 安全模式目的是在系统启动时检查各个DataNode上数据块的有效性

B. 根据策略对数据块进行必要的复制或删除

C. 当数据块最小百分比数满足的最小副本数条件时,会自动退出安全模式

D. 文件系统允许有修改

答案:D

知识点:HDFS安全模式





//MapReduce

MapReduce框架提供了一种序列化键/值对的方法,支持这种序列化的类能够在Map和Reduce过程中充当键或值,以下说法错误的是

A. 实现Writable接口的类是值

B. 实现WritableComparable<T>接口的类可以是值或键

C. Hadoop的基本类型Text并不实现WritableComparable<T>接口

D. 键和值的数据类型可以超出Hadoop自身支持的基本类型

答案:C





以下四个Hadoop预定义的Mapper实现类的描述错误的是

A. IdentityMapper<K, V>实现Mapper<K, V, K, V>,将输入直接映射到输出

B. InverseMapper<K, V>实现Mapper<K, V, K, V>,反转键/值对

C. RegexMapper<K>实现Mapper<K, Text, Text, LongWritable>,为每个常规表达式的匹配项生成一个(match, 1)对

D. TokenCountMapper<K>实现Mapper<K, Text, Text, LongWritable>,当输入的值为分词时,生成(taken, 1)对

答案:B

知识点:InverseMapper<K, V>实现Mapper<K, V, V, K>





下列关于HDFS为存储MapReduce并行切分和处理的数据做的设计,错误的是

A. FSDataInputStream扩展了DataInputStream以支持随机读

B. 为实现细粒度并行,输入分片(Input Split)应该越小越好

C. 一台机器可能被指派从输入文件的任意位置开始处理一个分片

D. 输入分片是一种记录的逻辑划分,而HDFS数据块是对输入数据的物理分割

答案:B

知识点:每个分片不能太小,否则启动与停止各个分片处理所需的开销将占很大一部分执行时间





针对每行数据内容为”Timestamp Url”的数据文件,在用JobConf对象conf设置conf.setInputFormat(WhichInputFormat.class)来读取这个文件时,WhichInputFormat应该为以下的

A. TextInputFormat

B. KeyValueTextInputFormat

C. SequenceFileInputFormat

D. NLineInputFormat

答案:B

知识点:四项主要的InputFormat类。KeyValueTextInputFormat以每行第一个分隔符为界,分隔符前为key,之后为value,默认制表符为\t





有关MapReduce的输入输出,说法错误的是

A. 链接多个MapReduce作业时,序列文件是首选格式

B. FileInputFormat中实现的getSplits()可以把输入数据划分为分片,分片数目和大小任意定义

C. 想完全禁止输出,可以使用NullOutputFormat

D. 每个reduce需将它的输出写入自己的文件中,输出无需分片

答案:B

知识点:分片数目在numSplits中限定,分片大小必须大于mapred.min.size个字节,但小于文件系统的块





Hadoop Streaming支持脚本语言编写简单MapReduce程序,以下是一个例子:

bin/hadoop jar contrib/streaming/hadoop-0.20-streaming.jar

  —input input/filename

  —output output

  —mapper ‘dosth.py 5’

  —file dosth.py

  —D mapred.reduce.tasks=1

以下说法不正确的是

A. Hadoop Streaming使用Unix中的流与程序交互

B. Hadoop Streaming允许我们使用任何可执行脚本语言处理数据流

C. 采用脚本语言时必须遵从UNIX的标准输入STDIN,并输出到STDOUT

D. Reduce没有设定,上述命令运行会出现问题

答案:D

知识点:没有设定特殊的reducer,默认使用IdentityReducer





在高阶数据处理中,往往无法把整个流程写在单个MapReduce作业中,下列关于链接MapReduce作业的说法,不正确的是

A.Job和JobControl类可以管理非线性作业之间的依赖

B.ChainMapper和ChainReducer类可以用来简化数据预处理和后处理的构成

C.使用ChainReducer时,每个mapper和reducer对象都有一个本地JobConf对象

D.ChainReducer.addMapper()方法中,一般对键/值对发送设置成值传递,性能好且安全性高

答案:D

知识点:ChainReducer.addMapper()方法中,值传递安全性高,引用传递性能高









//源码分析





//Zookeeper

hadoop基础题的更多相关文章

  1. Android测试基础题(三)

    今天接着给大家带来的是Android测试基础题(三).    需求:定义一个排序的方法,根据用户传入的double类型数组进行排序,并返回排序后的数组 俗话说的好:温故而知新,可以为师矣 packag ...

  2. [转]《Hadoop基础教程》之初识Hadoop

    原文地址:http://blessht.iteye.com/blog/2095675 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不 ...

  3. 小试牛刀3之JavaScript基础题

    JavaScript基础题 1.让用户输入两个数字,然后输出相加的结果. *prompt() 方法用于显示可提示用户进行输入的对话框. 语法: prompt(text,defaultText) 说明: ...

  4. 小试牛刀2:JavaScript基础题

    JavaScript基础题 1.网页中有个字符串“我有一个梦想”,使用JavaScript获取该字符串的长度,同时输出字符串最后两个字. 答案: <!DOCTYPE html PUBLIC &q ...

  5. 《Hadoop基础教程》之初识Hadoop

    Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. <Hadoop基础教程> ...

  6. HDU 1301 Jungle Roads (最小生成树,基础题,模版解释)——同 poj 1251 Jungle Roads

    双向边,基础题,最小生成树   题目 同题目     #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include<stri ...

  7. nyist oj 79 拦截导弹 (动态规划基础题)

    拦截导弹 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描写叙述 某国为了防御敌国的导弹突击.发展中一种导弹拦截系统.可是这样的导弹拦截系统有一个缺陷:尽管它的第一发炮弹可以 ...

  8. [转载] 《Hadoop基础教程》之初识Hadoop

    转载自http://blessht.iteye.com/blog/2095675 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用 ...

  9. hadoop基础教程免费分享

    提起Hadoop相信大家还是很陌生的,但大数据呢?大数据可是红遍每一个角落,大数据的到来为我们社会带来三方面变革:思维变革.商业变革.管理变革,各行业将大数据纳入企业日常配置已成必然之势.阿里巴巴创办 ...

随机推荐

  1. OO课第三单元总结

    一.梳理JML语言的理论基础 (1)理论基础 JMl的出现很大程度上一为了行为接口的规范化,用这种语言来指定特定模块的特定功能.JML的核心部分分为三个部分:前置条件(requires).后置条件(e ...

  2. Noip模拟46 2021.8.23

    给了签到题,但除了签到题其他的什么也不会.... T1 数数 人均$AC$,没什么好说的,就是排个序,然后双指针交换着往中间移 1 #include<bits/stdc++.h> 2 #d ...

  3. 最近公共祖先 牛客网 程序员面试金典 C++ Python

    最近公共祖先 牛客网 程序员面试金典 C++ Python 题目描述 有一棵无穷大的满二叉树,其结点按根结点一层一层地从左往右依次编号,根结点编号为1.现在有两个结点a,b.请设计一个算法,求出a和b ...

  4. 恶意代码分析实战四:IDA Pro神器的使用

    目录 恶意代码分析实战四:IDA Pro神器的使用 实验: 题目1:利用IDA Pro分析dll的入口点并显示地址 空格切换文本视图: 带地址显示图形界面 题目2:IDA Pro导入表窗口 题目3:交 ...

  5. 记录自己的踩坑第一天 | CSS:vertical-align 属性

    前言 最近老师让大家单独写前后端分离项目,真是大家卷完后端,一起去卷前端了.(我以前都是主要负责后端,处于只大致看的懂的级别,说多了都是泪啊). 真是处于一边学一边写的状态,基本就是每天早上看上两~三 ...

  6. 准备 dubbo 学习目录

    1. dubbo 背景及原理2. dubbo 架构分析4. dubbo 设计模式分析5. dubbo 实战使用6. dubbo 优化

  7. Spring Cloud Gateway的断路器(CircuitBreaker)功能

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  8. cmd命令配置MySQL

    当安装完MySql后,每次windows启动的时候都会将MySql服务启动起来. 如果是winxp则不需要使用管理员权限既可以很简单的打开和关闭,具体在cmd中敲入命令: 1.启动MySql服务: n ...

  9. 【Microsoft Azure 的1024种玩法】五、基于Azure Cloud Shell 一站式创建Linux VM

    [文章简介] Azure Cloud Shell 是一个用于管理 Azure 资源的.可通过浏览器访问的交互式经验证 shell. 它使用户能够灵活选择最适合自己工作方式的 shell 体验,无论是 ...

  10. [cf1458C]Latin Square

    维护$n^{2}$个三元组$(x,y,z)$,每一个三元组描述$a_{x,y}=z$ 对于RLDU这四个操作,即将所有三元组的$x$或$y$执行$\pm 1$(模$n$意义下) 对于IC这两个操作,即 ...