Surprise

Surprise是scikit系列中的一个。Surprise的User Guide有详细的解释和说明

支持多种推荐算法

基础算法/baseline algorithms

基于近邻方法(协同过滤)/neighborhood methods

矩阵分解方法/matrix factorization-based (SVD, PMF, SVD++, NMF)

下面介绍几种算法

基础算法:

  1. random_pred.NormalPredictor

  说明:Algorithm predicting a random rating based on the distribution of the training set, which is assumed to be normal.

  意思是:算法基于训练集的分布预测随机等级,假设该分布为正态分布

  2. baseline_only.BaselineOnly

  说明:Algorithm predicting the baseline estimate for given user and item.

  意思是:算法预测给定用户和项目的基线估计

协同过滤算法:

  3. knns.KNNBasic

  说明:A basic collaborative filtering algorithm.

  意思是:一种基本的协同过滤算法

  4. knns.KNNWithMeans

  说明:A basic collaborative filtering algorithm, taking into account the mean ratings of each user.

  意思是:一个基本的协同过滤算法,考虑到每个用户的平均评分

  5. knns.KNNBaseline

  说明:A basic collaborative filtering algorithm taking into account a baseline rating.

  意思是:一种基本的协同过滤算法考虑到基准评分

矩阵分解方法:

  6. matrix_factorization.SVD

  说明:The famous SVD algorithm, as popularized by Simon Funk during the Netflix Prize.

  意思是:著名的SVD算法

  7. matrix_factorization.SVDpp

  说明:The SVD++ algorithm, an extension of SVD taking into account implicit ratings.

  意思是:SVD++算法,SVD的一个扩展,考虑到隐式评级

  8. matrix_factorization.NMF

  说明:A collaborative filtering algorithm based on Non-negative Matrix Factorization.

  意思是:一种基于非负矩阵的协同过滤算法

  9. slope_one.SlopeOne

  说明:A simple yet accurate collaborative filtering algorithm.

  意思是:一种简单而准确的协同过滤算法

  10. co_clustering.CoClustering

  说明:A collaborative filtering algorithm based on co-clustering.

  意思是:一种基于共聚类的系统过滤算法

其中基于近邻的方法(协同过滤)可以设定不同的度量准则

相似度度量标准

  1. cosine

  说明:Compute the cosine similarity between all pairs of users (or items).

  意思是:计算所有用户对(或物品)之间的相似度

  2. msd

  说明:Compute the Mean Squared Difference similarity between all pairs of users (or items).

  意思是:计算所有用户对(或物品)之间的平均平方差相似度

  3. pearson

  说明:Compute the Pearson correlation coefficient between all pairs of users (or items).

  意思是:计算所有用户对(或物品)之间的皮尔逊相关系数

  4. pearson_baseline

  说明:Compute the (shrunk) Pearson correlation coefficient between all pairs of users (or items) using baselines for centering instead of means.

  意思是:计算所有用户对(或物品)之间的皮尔逊相关系数(收缩),使用基线进行居中,而不是使用平均值

支持不同的评估准则

评估准则

  1. rmse    最小均方根误差

  2. mae     平均绝对误差

  3. fcp        协调对的分数

参考文章:https://blog.csdn.net/mycafe_/article/details/79146764

Python推荐系统库--Surprise理论的更多相关文章

  1. Python推荐系统库Surprise

    Surprise(Simple Python Recommendation System Engine)是一款推荐系统库,是scikit系列中的一个.简单易用,同时支持多种推荐算法.基础算法.协同过滤 ...

  2. Python推荐系统库--Surprise实战

    一.使用movieLens数据集 from surprise import KNNBasic, SVD from surprise import Dataset from surprise impor ...

  3. python推荐系统库

    Python推荐系统库——Surprise 在Python中实现你自己的推荐系统 python-recsys:一款实现推荐系统的python库

  4. python推荐淘宝物美价廉商品

    完成的目标: 输入搜索的商品 以及 淘宝的已评价数目.店铺的商品描述(包括如实描述.服务态度.快递的5.0打分): 按要求,晒选出要求数量的结果,并按"物美价廉算法"排序后输出 思 ...

  5. python推荐淘宝物美价廉商品 2.0

    改动: 新增功能 :可选择只看天猫或淘宝 代码模块化封装,参数配置或输入单独在一个py文件管理,主函数功能只留出参数传入在setting配置的py文件里. main.py代码: # -*- codin ...

  6. Python推荐算法学习1

    1.闵可夫斯基距离 闵可夫斯基距离可以概括曼哈顿距离与欧几里得距离.  其中r越大,单个维度差值大小会对整体产生更大的影响.这个很好理解,假设当r=2时一个正方形对角线长度,永远是r=3时正方体对角线 ...

  7. python推荐书籍

    推荐的python电子书 python学习路线图 优先级 入门:python核心编程 提高:python cookbook 其他 (1).数据分析师 需要有深厚的数理统计基础,但是对程序开发能力不做要 ...

  8. python 推荐算法

    每个人都会有这样的经历:当你在电商网站购物时,你会看到天猫给你弹出的“和你买了同样物品的人还买了XXX”的信息:当你在SNS社交网站闲逛时,也会看到弹出的“你可能认识XXX“的信息:你在微博添加关注人 ...

  9. python并发编程-进程理论-进程方法-守护进程-互斥锁-01

    操作系统发展史(主要的几个阶段) 初始系统 1946年第一台计算机诞生,采用手工操作的方式(用穿孔卡片操作) 同一个房间同一时刻只能运行一个程序,效率极低(操作一两个小时,CPU一两秒可能就运算完了) ...

随机推荐

  1. openstack Q版部署-----Mysql、MQ、Memcached安装配置(2)

    一.安装mysql(contorller) 安装软件包: yum install -y mariadb mariadb-server python2-PyMySQL 配置my.cnf文件 vi /et ...

  2. 【多线程补充】SimpleDateFormat非线程安全与线程中、线程组中异常的处理

    1.SimpleDateFormat非线程安全的问题 类SimpleDateFormat主要负责日期的转换与格式化,但在多线程环境中,使用此类容易造成数据转换及处理的不正确,因为SimpleDateF ...

  3. CF1100D Dasha and Chess

    题目地址:CF1100D Dasha and Chess 这是我的第一道交互题 思路不难,主要讲讲这条语句: fflush(stdout); stdout是标准输出的意思.因为有时候,我们输出到std ...

  4. CF1095E Almost Regular Bracket Sequence

    题目地址:CF1095E Almost Regular Bracket Sequence 真的是尬,Div.3都没AK,难受QWQ 就死在这道水题上(水题都切不了,我太菜了) 看了题解,发现题解有错, ...

  5. IObservable 接口

    转载自:https://jingyan.baidu.com/article/d3b74d64ac3b6c1f77e609c1.html 方法/步骤     IObserver<T> 和 I ...

  6. 【运维】浪潮服务器一块硬盘显示红色Offline(或者Failed)解决办法

    [写在前面]           最近服务器不知道为什么总是出现故障,以前戴尔服务器硬盘出现故障,也就是说硬盘旁边的灯显示为红色的时候,一般情况下都是表示硬盘坏掉了,直接买一块新的硬盘,将坏掉的硬盘拿 ...

  7. 【转】python编写规范——中标软件有限公司测试中心

    [转]python编写规范 一.说明 二.内容 1. 代码布局 1.1 缩进 1.2 表达式和语句中的空格 1.3 行的最大长度 1.4 空行... 1.5 编码... 2. 语句... 2.1 标准 ...

  8. LwIP Application Developers Manual9---LwIP and multithreading

    1.前言 lwIP的内核并不是线程安全的.如果我们必须在多线程环境里使用lwIP,那么我们必须使用“upper”API层的函数(netconn或sockets).当使用raw API时,你需要自己保护 ...

  9. Crash工具实战-变量解析【转】

    转自:http://blog.chinaunix.net/uid-14528823-id-4358785.html Crash工具实战-变量解析 Crash工具用于解析Vmcore文件,Vmcore文 ...

  10. MD5 与 SHA 在 Delphi 中函数实现,加密密码

    MD5 与 SHA 在 Delphi 中函数实现. 为了加密密码,必须使用一种算法,查询资料,比较好的方法是使用:MD5等算法,参考:Delphi XE8 支持MD5 第一种方式是:引用 System ...