听说这是一道$ Tourist$现场没出的题

Codeforces #662C

题意:

给定$n*m的 01$矩阵,可以任意反转一行/列($0$变$1$,$1$变$0$),求最少$ 1$的数量

$ n<=20 \ m<=100000$


$ Solution$

考虑暴力

枚举每一行反转/不反转

预处理$ g(s)$表示某状态为$ s$的列的最少$ 1$的数量

显然$ g(s)=min(popcount(s),n-popcount(s))$

枚举每行是否反转之后直接$ O(m)$计算即可

时间复杂度$ O(2^n m)$,无法通过这题

容易发现瓶颈在于暴力枚举行状态之后无法快速计算答案

我们令$ f(s)$表示列状态为$ s$的列的出现次数,$ F(s)$表示行反转状态为$ s$的时候的答案

转移有$ F(s)=\sum\limits_{i=0}^{2^n-1}f(i)g(i \ xor \ s)$

由于$ i \ xor \ i \  xor \  s = s$

所以可以化简为$ F(s)=\sum\limits_{i \ xor \ j =s}f(i)g(j)$

是一个$ FWT$卷积的形式

直接$ FWT$优化

时间复杂度:$ O(nm+2^n n)$

注意$ FWT$过程中可能要开$ long \ long$


$ my \ code:$

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z,cnt,invn;
void fwt(int n,ll *a,int fla){
for(rt i=;i<n;i<<=)
for(rt j=;j<n;j+=i<<)
for(rt k=;k<i;k++){
ll x=a[j+k],y=a[i+j+k];
a[j+k]=x+y;a[i+j+k]=x-y;
}
if(fla==-)for(rt i=;i<n;i++)a[i]/=n;
}
char c[][];
int s[];ll f[],g[];
#define cnt(x) __builtin_popcount(x)
int main(){
n=read();m=read();
for(rt i=;i<=n;i++)scanf("%s",c[i]+);
for(rt i=;i<=n;i++)
for(rt j=;j<=m;j++)s[j]=s[j]<<|(c[i][j]=='');
for(rt i=;i<=m;i++)g[s[i]]++;
for(rt i=;i<(<<n);i++)f[i]=min(cnt(i),n-cnt(i));
fwt(<<n,f,);fwt(<<n,g,);
for(rt i=;i<<<n;i++)f[i]=f[i]*g[i];
fwt(<<n,f,-);
cout<<*min_element(f,f+(<<n));
return ;
}

Codeforces #662C Binary Table的更多相关文章

  1. Codeforces.662C.Binary Table(状压 FWT)

    题目链接 \(Description\) 给定一个\(n\times m\)的\(01\)矩阵,你可以选择一些行和一些列并将其中所有的\(01\)反转.求操作后最少剩下多少个\(1\). \(n\le ...

  2. CodeForces - 662C Binary Table (FWT)

    题意:给一个N*M的0-1矩阵,可以进行若干次操作,每次操作将一行或一列的0和1反转,求最后能得到的最少的1的个数. 分析:本题可用FWT求解. 因为其0-1反转的特殊性且\(N\leq20\),将每 ...

  3. [CodeForces 663E] - Binary Table(FWT)

    题目 Codeforces 题目链接 分析 大佬博客,写的很好 本蒟蒻就不赘述了,就是一个看不出来的异或卷积 精髓在于 mask对sta的影响,显然操作后的结果为mask ^ sta AC code ...

  4. [Codeforces]663E Binary Table

    某变换好题.不过听说还有O(2^n*n^2)DP的…… Description 给定一个n*m的01矩阵,你可以选择对任意行和任意列取反,使得最终“1”的数量尽量少. Input 第一行两个整数n,m ...

  5. CF 662C Binary Table

    用FWT优化计算. 首先发现行数很小,想到一个暴力的方法,就是以一个二进制位$0$表示这一行不翻转而二进制位$1$表示这一行翻转,然后$2^n$枚举出所有行的翻转情况,再$O(m)$计算所有的结果. ...

  6. CROC 2016 - Final Round [Private, For Onsite Finalists Only] C. Binary Table FWT

    C. Binary Table 题目连接: http://codeforces.com/problemset/problem/662/C Description You are given a tab ...

  7. Codeforces 417E Square Table(随机算法)

    题目链接:Codeforces 417E Square Table 题目大意:给出n和m.要求给出一个矩阵,要求每一列每一行的元素的平方总和是一个平方数. 解题思路:构造.依照 a a a b a a ...

  8. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  9. 【CF662C】Binary Table 按位处理

    [CF662C]Binary Table 题意:给你一个$n\times m$的01网格,你可以进行任意次操作,每次操作是将一行或一列的数都取反,问你最多可以得到多少个1? $n\le 20,m\le ...

随机推荐

  1. 斯坦福大学公开课机器学习: machine learning system design | prioritizing what to work on : spam classification example(设计复杂机器学习系统的主要问题及构建复杂的机器学习系统的建议)

    当我们在进行机器学习时着重要考虑什么问题.以垃圾邮件分类为例子.假如你想建立一个垃圾邮件分类器,看这些垃圾邮件与非垃圾邮件的例子.左边这封邮件想向你推销东西.注意这封垃圾邮件有意的拼错一些单词,就像M ...

  2. MooFest POJ - 1990 (树状数组)

    Every year, Farmer John's N (1 <= N <= 20,000) cows attend "MooFest",a social gather ...

  3. SPEL表达式

    https://www.cnblogs.com/best/p/5748105.html

  4. (sort 排序)P1583 魔法照片 洛谷

    题目描述 一共有n(n≤20000)个人(以1--n编号)向佳佳要照片,而佳佳只能把照片给其中的k个人.佳佳按照与他们的关系好坏的程度给每个人赋予了一个初始权值W[i].然后将初始权值从大到小进行排序 ...

  5. 降维方法PCA与SVD的联系与区别

    在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...

  6. 【JAVA】使用IntelliJ IDEA创建Java控制台工程

    1.File->New->Project 2.选择Java,下一步 3.模板有两个:Command Line App和Java Hello World,没有太大区别 4.命名: 5.结果:

  7. 1.单件模式(Singleton Pattern)

    创建型模式---单件模式(Singleton Pattern)动机(Motivation):    在软件系统中,经常有这样一些特殊的类,必须保证它们在系统中只存在一个实例,才能确保它们的逻辑正确性. ...

  8. hive记录-cdh配置hive和sentry

    1.cdh添加组件-sentry-选择主机-配置数据库 2.配置数据库 1)mysql -uroot -p 2) create database sentry DEFAULT CHARSET utf8 ...

  9. 鼠标右键Table的td弹出多级菜单,双击td编辑

    <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="C ...

  10. Vue 架构

    vue 一.认识Vue 定义:一个构建数据驱动的 web 界面的渐进式框架 优点: 1.可以完全通过客户端浏览器渲染页面,服务器端只提供数据 2.方便构建单页面应用程序(SPA) 二.引入Vue &l ...