iostat查看linux硬盘IO性能

rrqm/s: 每秒进行 merge 的读操作数目。即 delta(rmerge)/s
wrqm/s: 每秒进行 merge 的写操作数目。即 delta(wmerge)/s
r/s: 每秒完成的读 I/O 设备次数。即 delta(rio)/s
w/s: 每秒完成的写 I/O 设备次数。即 delta(wio)/s
rsec/s: 每秒读扇区数。即 delta(rsect)/s
wsec/s: 每秒写扇区数。即 delta(wsect)/s
rkB/s: 每秒读K字节数。是 rsect/s 的一半,因为每扇区大小为512字节。(需要计算)
wkB/s: 每秒写K字节数。是 wsect/s 的一半。(需要计算)
avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区)。delta(rsect+wsect)/delta(rio+wio)
avgqu-sz:平均I/O队列长度。即 delta(aveq)/s/1000 (因为aveq的单位为毫秒)。
await: 平均每次设备I/O操作的等待时间 (毫秒)。即 delta(ruse+wuse)/delta(rio+wio)
svctm: 平均每次设备I/O操作的服务时间 (毫秒)。即 delta(use)/delta(rio+wio)
%util: 一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的。即 delta(use)/s/1000 (因为use的单位为毫秒)

如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘

可能存在瓶颈。

idle小于70% IO压力就较大了,一般读取速度有较多的wait.

同时可以结合vmstat 查看查看b参数()和wa参数()

另外还可以参考

svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。

队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。

例子.(I/O 系统 vs. 超市排队)

举 一个例子,我们在超市排队 checkout 时,怎么决定该去哪个交款台呢? 首当是看排的队人数,5个人总比20人要快吧? 除了数人头,我们也常常看看前面人购买的东西多少,如果前面有个采购了一星期食品的大妈,那么可以考虑换个队排了。还有就是收银员的速度了,如果碰上了连 钱都点不清楚的新手,那就有的等了。另外,时机也很重要,可能 5 分钟前还人满为患的收款台,现在已是人去楼空,这时候交款可是很爽啊,当然,前提是那过去的 5 分钟里所做的事情比排队要有意义 (不过我还没发现什么事情比排队还无聊的)。

I/O 系统也和超市排队有很多类似之处:

r/s+w/s 类似于交款人的总数

平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数

平均服务时间(svctm)类似于收银员的收款速度

平均等待时间(await)类似于平均每人的等待时间

平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少

I/O 操作率 (%util)类似于收款台前有人排队的时间比例。

我们可以根据这些数据分析出 I/O 请求的模式,以及 I/O 的速度和响应时间。

参数输出分析

# iostat -x 1
avg-cpu: %user %nice %sys %idle
16.24 0.00 4.31 79.44
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/cciss/c0d0 0.00 44.90 1.02 27.55 8.16 579.59 4.08 289.80 20.57 22.35 78.21 5.00 14.29
/dev/cciss/c0d0p1 0.00 44.90 1.02 27.55 8.16 579.59 4.08 289.80 20.57 22.35 78.21 5.00 14.29
/dev/cciss/c0d0p2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

上面的 iostat 输出表明秒有 28.57 次设备 I/O 操作: 总IO(io)/s = r/s(读) +w/s(写) = 1.02+27.55 = 28.57 (次/秒) 其中写操作占了主体 (w:r = 27:1)。

平均每次设备 I/O 操作只需要 5ms 就可以完成,但每个 I/O 请求却需要等上 78ms,为什么? 因为发出的 I/O 请求太多 (每秒钟约 29 个),假设这些请求是同时发出的,那么平均等待时间可以这样计算:

平均等待时间 = 单个 I/O 服务时间 * ( 1 + 2 + … + 请求总数-1) / 请求总数

应用到上面的例子: 平均等待时间 = 5ms * (1+2+…+28)/29 = 70ms,和 iostat 给出的78ms 的平均等待时间很接近。这反过来表明 I/O 是同时发起的。

每秒发出的 I/O 请求很多 (约 29 个),平均队列却不长 (只有 2 个 左右),这表明这 29 个请求的到来并不均匀,大部分时间 I/O 是空闲的。

一秒中有 14.29% 的时间 I/O 队列中是有请求的,也就是说,85.71% 的时间里 I/O 系统无事可做,所有 29 个 I/O 请求都在142毫秒之内处理掉了。

delta(ruse+wuse)/delta(io) = await = 78.21 => delta(ruse+wuse)/s =78.21 * delta(io)/s = 78.21*28.57 = 2232.8,表明每秒内的I/O请求总共需要等待2232.8ms。所以平均队列长度应为 2232.8ms/1000ms = 2.23,而 iostat 给出的平均队列长度 (avgqu-sz) 却为 22.35,为什么?! 因为 iostat 中有 bug,avgqu-sz 值应为 2.23,而不是 22.35。

文章来源

通过iostat来查看linux硬盘IO性能|实例分析的更多相关文章

  1. iostat查看linux硬盘IO性能

    rrqm/s:   每秒进行 merge 的读操作数目.即 delta(rmerge)/swrqm/s:  每秒进行 merge 的写操作数目.即 delta(wmerge)/sr/s:        ...

  2. 使用iostat来对linux硬盘IO性能进行检测

    -x显示扩展统计数据 # 每隔1s显示6个统计数据 $ iostat -x 1 6 # 每隔1s显示磁盘sda的6个统计数据 $ iostat -x sda 1 6 # 每隔1s显示设备sda及其分区 ...

  3. iostat来对linux硬盘IO性能进行了解

    http://www.php-oa.com/2009/02/03/iostat.html

  4. 用iostat对linux硬盘IO性能进行检测

    近期公司安装了几台DELL PE2650和2850的服务器,统一安装的是RHLE5.132位系统,而服务器的SCSI硬盘都统一做了raid1.公司老总要求对硬盘IO作统一检测报告,在Linux下找了许 ...

  5. Linux系统网络性能实例分析

    由于TCP/IP是使用最普遍的Internet协议,下面只集中讨论TCP/IP 栈和以太网(Ethernet).术语 LinuxTCP/IP栈和 Linux网络栈可互换使用,因为 TCP/IP栈是 L ...

  6. Centos硬盘IO性能检测命令iostat[转]

    Centos硬盘IO性能检测命令iostat[转] 在Linux下频繁存取文件后,物理内存会很快被用光,当程序结束后,内存不会被正常释放,而是一直作为caching.这个问题,貌似有不少人在问,不过都 ...

  7. Linux的IO性能监控工具iostat详解

    Linux系统出现了性能问题,一般我们可以通过top.iostat.free.vmstat等命令来查看初步定位问题.其中iostat可以提供更丰富的IO性能状态数据. . 基本使用 $iostat - ...

  8. [转]查看linux服务器硬盘IO读写负载

    最近一台linux服务器出现异常,系统反映很慢,相应的应用程序也无法反映,而且还出现死机的情况,经过几天的观察了解,发现服务器压力很大,主要的压力来自硬盘的IO访问已经达到100% 为了方便各位和自己 ...

  9. 查看linux服务器硬盘IO读写负载

    最近一台linux服务器出现异常,系统反映很慢,相应的应用程序也无法反映,而且还出现死机的情况,经过几天的观察了解,发现服务器压力很大,主要的压力来自硬盘的IO访问已经达到100% 为了方便各位和自己 ...

随机推荐

  1. java.util.concurrent.ExecutionException: org.apache.catalina.LifecycleException or 程序包 javax.servlet 不存在

    遇到下面这个问题 程序包 javax.servlet 不存在 或者 java.util.concurrent.ExecutionException: org.apache.catalina.Lifec ...

  2. Flask里面session的基本操作

    #session是依赖于flask的session模块 #如果想使用session模块,在配置里必须定义sessionkey from flask import Flask,session #建立对象 ...

  3. 线程池-Executors

    合理使用线程池能够带来三个好处 减少创建和销毁线程上所花的时间以及系统资源的开销 提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行 提高线程的客观理性.线程是稀缺资源,如果无限制的创 ...

  4. [sklearn] 官方例程-Imputing missing values before building an estimator 随机填充缺失值

    官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...

  5. LwIP Application Developers Manual8---Sample lwIP applications

    1.前言 你已经编译lwIP协议栈在你的目标平台上,并且网络驱动正常工作.你可以ping你的设备. 干得好,为你感到骄傲.虽然一个设备可以响应ping,但并不能算一个完整的应用. 现在你可以通过网络接 ...

  6. LwIP Application Developers Manual5---高层协议之DNS

    1.前言 lwIP提供一个基本的DNS客户端(1.3.0后引进),通过使用DNS(Domain Name System)协议来允许应用程序解决主机名到地址的转换. 在文件lwipopts.h里面定义L ...

  7. Python os.walk文件遍历用法【转】

    python中os.walk是一个简单易用的文件.目录遍历器,可以帮助我们高效的处理文件.目录方面的事情. 1.载入 要使用os.walk,首先要载入该函数 可以使用以下两种方法 import os ...

  8. python 彩色日志配置

    import os import logging import logging.config as log_conf import datetime import coloredlogs log_di ...

  9. boost常用库案例

    1.boost::any boost::any是一种通用的数据类型,可以将各种类型包装后统一放入容器内,最重要的它是类型安全的.有点象COM里面的variant. 使用方法: any::type()  ...

  10. sqlserver记录去重

    ,[emp_name] ,[gender] ,[department] ,[salary] from [employee] select * from ( select ROW_NUMBER() ov ...