欧拉函数 :
欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) 。

完全余数集合:
定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合。 显然 |Zn| =φ(n) 。

有关性质:
对于素数 p ,φ(p) = p -1 。
对于两个不同素数 p, q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1) 。
这是因为 Zn = {1, 2, 3, ... , n - 1} - {p, 2p, ... , (q - 1) * p} - {q, 2q, ... , (p - 1) * q} , 则 φ(n) = (n - 1) - (q - 1) - (p - 1) = (p -1) * (q -1) =φ(p) * φ(q) 。

欧拉定理 :
对于互质的正整数 a 和 n ,有 a^φ(n) ≡ 1 mod n 。

证明:
( 1 ) 令 Zn = {x1, x2, ..., xφ(n)} , S = {a * x1 mod n, a * x2 mod n, ... , a * xφ(n) mod n} ,
则 Zn = S 。
① 因为 a 与 n 互质, xi (1 ≤ i ≤ φ(n)) 与 n 互质, 所以 a * xi 与 n 互质,所以 a * xi mod n ∈ Zn 。
② 若 i ≠ j , 那么 xi ≠ xj,且由 a, n互质可得 a * xi mod n ≠ a * xj mod n (消去律)。

( 2 ) a^φ(n) * x1 * x2 *... * xφ(n) mod n
≡ (a * x1) * (a * x2) * ... * (a * xφ(n)) mod n
≡ (a * x1 mod n) * (a * x2 mod n) * ... * (a * xφ(n) mod n) mod n
≡ x1 * x2 * ... * xφ(n) mod n
对比等式的左右两端,因为 xi (1 ≤ i ≤ φ(n)) 与 n 互质,所以 a^φ(n) ≡ 1 mod n (消去律)。
注:
消去律:如果 gcd(c,p) = 1 ,则 ac ≡ bc mod p ⇒ a ≡ b mod p 。

费马定理 :
若正整数 a 与素数 p 互质,则有 ^ap - 1 ≡ 1 mod p 。
证明这个定理非常简单,由于 φ(p) = p -1,代入欧拉定理即可证明。

How to proof RSA的更多相关文章

  1. RSA签名的PSS模式

    本文由云+社区发表 作者:mariolu 一.什么是PSS模式? 1.1.两种签名方式之一RSA-PSS PSS (Probabilistic Signature Scheme)私钥签名流程的一种填充 ...

  2. Authorization Bypass in RSA NetWitness

    https://www.cnblogs.com/iAmSoScArEd/ SEC Consult Vulnerability Lab Security Advisory < 20190515-0 ...

  3. 加密算法大全图解 :密码体系,对称加密算法,非对称加密算法,消息摘要, Base64,数字签名,RSA,DES,MD5,AES,SHA,ElGamal,

    1. 加密算法大全: ***************************************************************************************** ...

  4. “不给力啊,老湿!”:RSA加密与破解

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 加密和解密是自古就有技术了.经常看到侦探电影的桥段,勇敢又机智的主角,拿着一长串毫 ...

  5. .NET 对接JAVA 使用Modulus,Exponent RSA 加密

    最近有一个工作是需要把数据用RSA发送给Java 虽然一开始标准公钥 net和Java  RSA填充的一些算法不一样 但是后来这个坑也补的差不多了 具体可以参考 http://www.cnblogs. ...

  6. [C#] 简单的 Helper 封装 -- SecurityHelper 安全助手:封装加密算法(MD5、SHA、HMAC、DES、RSA)

    using System; using System.IO; using System.Security.Cryptography; using System.Text; namespace Wen. ...

  7. PHP的学习--RSA加密解密

    PHP服务端与客户端交互或者提供开放API时,通常需要对敏感的数据进行加密,这时候rsa非对称加密就能派上用处了. 举个通俗易懂的例子,假设我们再登录一个网站,发送账号和密码,请求被拦截了. 密码没加 ...

  8. RSA非对称加密,使用OpenSSL生成证书,iOS加密,java解密

    最近换了一份工作,工作了大概一个多月了吧.差不多得有两个月没有更新博客了吧.在新公司自己写了一个iOS的比较通用的可以架构一个中型应用的不算是框架的一个结构,并已经投入使用.哈哈 说说文章标题的相关的 ...

  9. RSA算法

    RSA.h #ifndef _RSA_H #define _RSA_H #include<stdio.h> #include<iostream> #include<mat ...

随机推荐

  1. AGC004F Namori 树形DP、解方程(?)

    传送门 因为不会列方程然后只会树上的,被吊打了QAQ 不难想到从叶子节点往上计算答案.可以考虑到可能树上存在一个点,在它的儿子做完之后接着若干颜色为白色的儿子,而当前点为白色,只能帮助一个儿子变成黑色 ...

  2. 如何备份和恢复你的TFS服务器(二)

    配置一个备份计划 在你的TFS(Team Foundation Server)2010服务器上安装新版本的Power Tools以后(是的,这个工具只支持TFS(Team Foundation Ser ...

  3. Groovy语言学习--语法基础(1)

    2018年11月末,从上家公司离职后进入现在的公司.进入项目以来,发现项目中有很多groovy脚本,以前没接触过groovy,抽时间系统地学一下,也方便后期项目的开发和维护. groovy和java的 ...

  4. H5 62-浮动元素字围现象

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. 《梦断代码》Scott Rosenberg著(二)

    书中有一段说的是一个闪烁缺陷——在改变某软件中某个窗体的尺寸时,屏幕会闪烁一秒钟左右.虽然该缺陷不会影响程序运行,但它不符合作者的审美观,历时六个多月仍然没能修正.其实在日常的编程中也有许多小bug的 ...

  6. Python_生产者消费者模型、管道、数据共享、进程池

    1.生产者消费者模型 生产者 —— 生产数据的人 消费者 —— 消费数据的人 生产者消费者模型:供销数据不平衡的现象. import time import random from multiproc ...

  7. 【转】给word中的代码着色

    基本操作 1)用Notepad++直接编辑代码文件,注意文件后缀,比如.cpp是C++程序,.m是Matlab,linux文件是.sh,写对后缀表示的文件类型,才有对应的语法高亮效果. 2)选中需要的 ...

  8. #Leetcode# 985. Sum of Even Numbers After Queries

    https://leetcode.com/problems/sum-of-even-numbers-after-queries/ We have an array A of integers, and ...

  9. JEECG DataGridColumn dictionary使用问题

    <t:dgCol title="线索所属人"  field="ownerId"  query="true"  queryMode=&q ...

  10. Linux之基础知识

    在此总结使用Linux的时候,一些必须知道的基础内容,记录一下,加强记忆 一.  linux 运行级别 运行级别就是操作系统当前正在运行的功能级别.这个级别从0到6 ,具有不同的功能.这些级别在/et ...