51Nod1253 Kundu and Tree 容斥原理
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1253.html
题目传送门 - 51Nod1253
题意
树包含 N 个点和 N-1 条边。树的边有 2 中颜色红色 ('r') 和黑色 ('b') 。给出这 N-1 条边的颜色,求有多少节点的三元组 (a,b,c) 满足:节点 a 到节点 b 、节点 b 到节点 c 、节点 c 到节点 a 的路径上,每条路径都至少有一条边是红色的。注意 (a,b,c) , (b,a,c) 以及所有其他排列被认为是相同的三元组。输出结果对 1000000007 取余的结果。
题解
把黑色边连接的点搞成一块。
答案 = 任选 3 个点的方案数 - 在同一个黑色块中选 3 个点的方案数 - 任选三个数,其中两个点在同一个黑色块中的方案数。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=50005;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
struct Gragh{
static const int M=N*2;
int cnt,y[M],z[M],nxt[M],fst[N];
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void add(int a,int b,int c){
y[++cnt]=b,z[cnt]=c,nxt[cnt]=fst[a],fst[a]=cnt;
}
}g;
int n,dsize[N];
vector <int> sz;
void dfs(int x,int pre){
dsize[x]=1;
for (int i=g.fst[x];i;i=g.nxt[i])
if (g.y[i]!=pre){
int y=g.y[i];
dfs(y,x);
if (g.z[i])
dsize[x]+=dsize[y];
else
sz.push_back(dsize[y]);
}
}
LL calc(LL x){
return x*(x-1)*(x-2)/6;
}
int main(){
n=read();
for (int i=1;i<n;i++){
int x=read(),y=read();
char s[2];
scanf("%s",s);
g.add(x,y,s[0]=='b');
g.add(y,x,s[0]=='b');
}
sz.clear();
dfs(1,0);
sz.push_back(dsize[1]);
LL ans=calc(n);
for (int i=0;i<sz.size();i++)
ans-=calc(sz[i])+1LL*sz[i]*(sz[i]-1)/2*(n-sz[i]);
printf("%lld",ans%1000000007);
return 0;
}
51Nod1253 Kundu and Tree 容斥原理的更多相关文章
- 51nod-1253: Kundu and Tree
[传送门:51nod-1253] 简要题意: 给出一棵n个点的树,树上的边要么为黑,要么为红 求出所有的三元组(a,b,c)的数量,满足a到b,b到c,c到a三条路径上分别有至少一条红边 题解: 显然 ...
- 51nod1253 Kundu and Tree
树包含N个点和N-1条边.树的边有2中颜色红色('r')和黑色('b').给出这N-1条边的颜色,求有多少节点的三元组(a,b,c)满足:节点a到节点b.节点b到节点c.节点c到节点a的路径上,每条路 ...
- 【51nod1253】Kundu and Tree(容斥+并查集)
点此看题面 大致题意: 给你一棵树,每条边为黑色或红色, 求有多少个三元组\((x,y,z)\),使得路径\((x,y),(x,z),(y,z)\)上都存在至少一条红色边. 容斥 我们可以借助容斥思想 ...
- HackerRank "Kundu and Tree" !!
Learnt from here: http://www.cnblogs.com/lautsie/p/3798165.html Idea is: we union all pure black edg ...
- 51nod_1253:Kundu and Tree(组合数学)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1253 全为红边的情况下,ans=C(n,3).假设被黑边相连 ...
- ARC101E Ribbons on Tree 容斥原理+dp
题目链接 https://atcoder.jp/contests/arc101/tasks/arc101_c 题解 直接容斥.题目要求每一条边都被覆盖,那么我们就容斥至少有几条边没有被覆盖. 那么没有 ...
- 51nod 1253:Kundu and Tree(组合数学)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1253 所有的三元组的可能情况数有ans0=C(n,3).然后 ...
- 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)
推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...
- [poj1741]Tree(点分治+容斥原理)
题意:求树中点对距离<=k的无序点对个数. 解题关键:树上点分治,这个分治并没有传统分治的合并过程,只是分成各个小问题,并将各个小问题的答案相加即可,也就是每层的复杂度并不在合并的过程,是在每层 ...
随机推荐
- CSS集锦
div内容自动换行:word-wrap:break-word;word-break:break-all;
- sublime text3 golang插件(golang build)
1 前言 先前条件: sublime text3:下载地址:http://www.sublimetext.com/3 golang:下载地址:https://golang.google.cn/dl/ ...
- Cocos2d-x中文显示乱码
Cocos2d-x 引擎编码格式默认为utf8,而VS开发环境默认为gbk2312,所以把代码文件保存为utf8格式就能解决. VS->文件->高级保存选项->Unicode(UTF ...
- 排查linux系统是否被入侵
在日常繁琐的运维工作中,对linux服务器进行安全检查是一个非常重要的环节.今天,分享一下如何检查linux系统是否遭受了入侵? 一.是否入侵检查 1)检查系统日志 检查系统错误登陆日志,统计IP重试 ...
- centos6.5安装python2.7、pip、numpy、scipy
1..安装Development Tools yum groupinstall -y 'development tools' 2.安装SSL.bz2.zlib来为Python的安装做好准备工作 yum ...
- 关于main函数的参数问题
我们经常用的main函数都是不带参数的.因此main 后的括号都是空括号.实际上,main函数可以带参数,这个参数可以认为是 main函数的形式参数.C语言规定main函数的参数只能有两个, 习惯上这 ...
- liunx 利用nginx 实现负载均衡
一般采用软件实现负载均衡的有Nginx.apache.nginx 近年来使用频繁,其官网上面显示可以承载5万并发访问量,太牛了. nginx 相比 apache优势明显:Nginx 服务程序比较稳定, ...
- socket-WebSocket-HttpListener-TcpListener服务端客户端的具体使用案例
/// <summary> /// 启动服务监听的ip和端口的主线程 /// </summary> /// <param name="tunnelPort&qu ...
- easyui datagrid 隔行变色
easyui datagrid 隔行变色 一:实现样图 二:实现代码 $('#dataGrid').datagrid({ rowStyler:function(index,row){ if (row ...
- ORACLE_修改实例的内存大小
注:本文来源于:星火spark <Oracle的实例占用内存调整> ORACLE_修改实例的内存大小 一:修改oracle数据库实例内存大小脚本 ---- 1.操作 (oracle使用内 ...