[BZOJ 2186] [SDOI 2008] 沙拉公主的困惑
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为 \(1\) 到 \(N\) 的阶乘,但是,政府只发行编号与 \(M!\) 互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对 \(R\) 取模后的答案即可。\(R\) 是一个质数。
Input
第一行为两个整数 \(T,R~(R\le10^9+10,T\le10000)\),\(T\) 表示该组中测试数据数目,\(R\) 为模;
后面 \(T\) 行,每行一对整数\(N,M\),见题目描述。
Output
共 \(T\) 行,对于每一对 \(N,M\),输出 \(1\) 至 \(N!\) 中与 \(M!\) 素质的数的数量对 \(R\) 取模后的值。
Sample Input
1 11
4 2
Sample Output
1
HINT
\(1 \le M\le N \le 10000000\)
Solution
因为 \(m\le n\Rightarrow m!\mid n!\),所以答案为 \(\dfrac{\varphi(m!)\times n!}{m!}\)。
其中 \(\varphi(m!)=m!\left(1-\dfrac{1}{p_1}\right)\left(1-\dfrac{1}{p_2}\right)\left(1-\dfrac{1}{p_3}\right)\cdots\),\(p_1,p_2,p_3\) 是 \(m!\) 的质因数,也就是 \([1,m]\) 中的质数。
最终 \(ans=\dfrac{\varphi(m!)\times n!}{m!}=n!\left(1-\dfrac{1}{p_1}\right)\left(1-\dfrac{1}{p_2}\right)\left(1-\dfrac{1}{p_3}\right)\cdots\)
Code
#include <cstdio>
#include <cmath>
const int N = 10000000;
int np[N + 5], p[N + 5], tot, inv[N + 5], fac[N + 5], ans[N + 5], mod;
int read() {
int x = 0; char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x;
}
void euler() {
for (int i = 2; i <= N; ++i) {
if (!np[i]) p[++tot] = i;
for (int j = 1; j <= tot && i * p[j] <= N; ++j) {
np[i * p[j]] = 1;
if (i % p[j] == 0) break;
}
}
}
int main() {
int T = read(); mod = read(), euler(), fac[1] = inv[1] = ans[1] = 1;
for (int i = 2; i <= N; ++i) fac[i] = 1LL * fac[i - 1] * i % mod;
for (int i = 2; i <= N && i < mod; ++i) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod;
for (int i = 2; i <= N; ++i) {
ans[i] = ans[i - 1];
if (!np[i]) ans[i] = 1LL * ans[i] * (i - 1) % mod * inv[i % mod] % mod;
}
while (T--) {
int n = read(), m = read();
printf("%lld\n", 1LL * fac[n] * ans[m] % mod);
}
return 0;
}
[BZOJ 2186] [SDOI 2008] 沙拉公主的困惑的更多相关文章
- [SDOI 2008]沙拉公主的困惑
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- BZOJ 2186 沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 3397 Solved: 1164 [Submit] ...
- [BZOJ 2186][SDOI 2008] 莎拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 4519 Solved: 1560[Submit][S ...
- BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
- 【BZOJ2186】沙拉公主的困惑(数论)
[BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...
随机推荐
- Appium-超过60s的应用场景如何处理
前言: 最近在搞appium自动化项目,遇到超过60s的应用场景时,总是报错报错.如何解决呢?见下文. 报错信息: 2018-05-21 14:03:42:253 - [HTTP] <-- PO ...
- H5 54-清空默认边距
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- HDU - 1540 线段树的合并
这个题题意我大概解释一下,就是一开始一条直线,上面的点全是联通的,有三种操作 1.操作D把从左往右第x个村庄摧毁,然后断开两边的联通. 2.询问Q节点相联通的最长长度 3.把最后破坏的村庄重建. 这个 ...
- Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)
目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...
- Python—反射
反射 1 什么是反射 反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问.检测和修改它本身状态或行为的一种能力(自省).这一概念的提出很快引发了计算机科学领域关于应用反射性的研究.它 ...
- transfer.sh:通过命令行简单的创建文件分享
简介 通过一个命令,就可以在终端上,将文件加密传输到远程服务器,提供对外文件共享的功能. transfer.sh这是一个我常用的.可以在终端上使用的文件共享服务,可以在某些方面替代sz或者scp命令. ...
- 如何利用mui实现底部选择器(含日期选择器)?
1.第一步: 项目中应该引入相应的css和js文件,相关文件可到mui官网查询. <link rel="stylesheet" type="text/css&quo ...
- p57商环
1.半群满足对乘法封闭吗? 2.理想I 又不是R的子群,为什么I是R的正规子群呢? 3.~为什么对加法是同余关系? 4. 属于R,b-b属于I,为什么R作用在I上面,还属于I呢? 1.封闭 2.理想I ...
- python的UnboundLocalError: local variable 'xxx' referenced b
一.意思: 本地变量xxx引用前没定义. 二.错误原因 在于python没有变量的声明 , 所以它通过一个简单的规则找出变量的范围 :如果有一个函数内部的变量赋值 ,该变量被认为是本地的,所以 ...
- tomcat redis 集群 session共享
jcoleman/tomcat-redis-session-manager: Redis-backed non-sticky session store for Apache Tomcathttps: ...