[USACO2008 Mar]土地购买
传送门:>HERE<
题意:购买一组土地的费用是最长的长乘以最长的宽。现给出n块土地,求购买所有土地(可以将土地分为任意组,不需按顺序)的最小费用
解题思路
动态规划+斜率优化
斜率优化在这道题里并不难,关键是第一步的方程以及思想
由于买一组土地的关键是最大的长和宽,所以设任意两块土地$x, y$,若$w[x] \leq w[y] 且 l[x] \leq l[y]$,那么我们可以把$x, y$放在一组里,这样x存不存在都一样。因此x就可以扔掉不管了。所以第一步我们可以把所有没用的都扔掉。
那么怎么扔呢?首先对所有土地以高度为第一关键字,宽度为第二关键字从小到大排序。直接利用单调栈踢出所有没用的土地——然后让每一块土地依次进栈,由于高度是单调递增的,那么如果当前土地的宽度 $\geq$ 栈顶的宽度,也就意味着栈顶那块就没用了,因此可以pop
这样做有什么好处?令$f[i]$表示购买前i块土地的费用,枚举断点j,得状态转移方程$$f[i] = f[j] + h[i] * w[j+1]$$由于现在栈内已经单调,根据递增与递减的性质,就可以O(1)求得这一区间土地长宽的最大最小值了
然后就可以做斜率优化的DP了。
Code
long long
坑点挺多的,调了一上午。先是x坐标移项之后是负的,并且栈溢出要判断,不然top减成负数了。
/*By QiXingzhi*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
#define int long long
const int MAXN = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
struct Land{ int w,h; }a[MAXN],A[MAXN];
int n,top,h,t,sta[MAXN],q[MAXN],f[MAXN];
inline bool comp(const Land& a, const Land& b){ return (a.h != b.h) ? a.h < b.h : a.w < b.w; }
inline double X(int i){ return -A[i+].w; }
inline double Y(int i){ return f[i]; }
inline double Slope(int i, int j){ return (double)(Y(i)-Y(j)) / (double)(X(i)-X(j)); }
main(){
n = r;
for(int i = ; i <= n; ++i) a[i].w = r, a[i].h = r;
sort(a+, a+n+, comp);
sta[++top] = ;
for(int i = ; i <= n; ++i){
while(top> && a[i].w >= a[sta[top]].w) --top;
sta[++top] = i;
}
for(int i = ; i <= top; ++i) A[i] = a[sta[i]];
for(int i = ; i <= top; ++i){
while(h<t && Slope(q[h],q[h+]) < A[i].h) ++h;
f[i] = f[q[h]] + A[q[h]+].w * A[i].h;
while(h<t && Slope(q[t],q[t-]) > Slope(q[t],i)) --t;
q[++t] = i;
}
printf("%lld", f[top]);
return ;
}
[USACO2008 Mar]土地购买的更多相关文章
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- 1597: [Usaco2008 Mar]土地购买
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4023 Solved: 1470[Submit] ...
- 【斜率DP】bzoj1597: [Usaco2008 Mar]土地购买
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2474 Solved: 900[Submit][ ...
- 【BZOJ 1597】 [Usaco2008 Mar]土地购买 (斜率优化)
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3601 Solved: 1322 Descrip ...
- BZOJ 1597: [Usaco2008 Mar]土地购买( dp + 斜率优化 )
既然每块都要买, 那么一块土地被另一块包含就可以不考虑. 先按长排序, 去掉不考虑的土地, 剩下的土地长x递增, 宽y递减 dp(v) = min{ dp(p)+xv*yp+1 } 假设dp(v)由i ...
- BZOJ 1597: [Usaco2008 Mar]土地购买【斜率优化+凸包维护】
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4989 Solved: 1847[Submit] ...
- bzoj1597[Usaco2008 Mar]土地购买 斜率优化dp
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5524 Solved: 2074[Submit] ...
- 【bzoj1597】[Usaco2008 Mar]土地购买
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3739 Solved: 1376[Submit] ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 斜率优化
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MB Description 农夫John准备扩大他的农场,他正在考虑N ...
- 1597: [Usaco2008 Mar]土地购买 [ dp+斜率优化 ] 未完
传送门 1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1979 Solved: 705[Subm ...
随机推荐
- Linux iostat 命令
iostat 命令是 I/O statistics(输入/输出统计)的缩写,用来报告系统的 CPU 统计信息和块设备及其分区的 IO 统计信息.iostat 是 sysstat 工具集的一个工具,在 ...
- 如何利用snmp协议发现大型复杂环境的网络拓扑
参考文献:http://blog.51cto.com/13769225/2121431 获取指标参考下图: 1.取接口描述(指定VLAN号) 命令:snmpwalk -v 2c -c Cvicse12 ...
- koa文件上传中间件——koa-multer
koa-multer用法基本和multer一致,npm里koa-multer的用法介绍比较简单,可以参考multer的用法 const Koa = require('koa'); const Rout ...
- 一些leetcode算法题
DFS算法 思想:一直往深处走,直到找到解或者走不下去为止 DFS(dep,...) // dep代表目前DFS的深度 { if (找到解或者走不下去了){ return; } 枚举下种情况,DFS( ...
- p2394 精度题
题意:输出n/23即可 解法一: 利用高精度的long double直接输出,但由于n的长度不确定,我们要加个限制%12Lf #include <cstdio> int main(){ l ...
- echarts各个配置项详细说明总结
https://blog.csdn.net/sinat_34492035/article/details/70258557 https://blog.csdn.net/qq_34908167/arti ...
- Java面试题详解一:面向对象三大特性
一,多态:1.面向对象四大基本特性:抽象,封装,继承,多态抽象,封装,继承是多态的基础.多态是抽象,封装,继承的表现.2.什么是多态不同类的对象对同一消息作出不同的响应叫做多态3.多态的作用简单来说: ...
- MySQL中有关NULL的计算
mysql> select NULL=NULL; #判断两个NULL是否相等,结果不是1也不是0 +-----------+ | NULL=NULL | +-----------+ | NULL ...
- 简要了解 MySql 5.5/5.6/5.7/8 出现的新特性
MySQL的开发周期 在比较之前,首先提一下MySQL的开发周期. MySQL一个大版本的开发,大致经历如下几个阶段: Feature Development Feature Testing Perf ...
- Svn基本操作
日常开发中使用到的Svn基本操作 svn https://tortoisesvn.net/ https://www.visualsvn.com/server/download/ 1. 检 ...