传送门:>HERE<

题意:购买一组土地的费用是最长的长乘以最长的宽。现给出n块土地,求购买所有土地(可以将土地分为任意组,不需按顺序)的最小费用

解题思路

动态规划+斜率优化

斜率优化在这道题里并不难,关键是第一步的方程以及思想

由于买一组土地的关键是最大的长和宽,所以设任意两块土地$x, y$,若$w[x] \leq w[y] 且 l[x] \leq l[y]$,那么我们可以把$x, y$放在一组里,这样x存不存在都一样。因此x就可以扔掉不管了。所以第一步我们可以把所有没用的都扔掉。

那么怎么扔呢?首先对所有土地以高度为第一关键字,宽度为第二关键字从小到大排序。直接利用单调栈踢出所有没用的土地——然后让每一块土地依次进栈,由于高度是单调递增的,那么如果当前土地的宽度 $\geq$ 栈顶的宽度,也就意味着栈顶那块就没用了,因此可以pop

这样做有什么好处?令$f[i]$表示购买前i块土地的费用,枚举断点j,得状态转移方程$$f[i] = f[j] + h[i] * w[j+1]$$由于现在栈内已经单调,根据递增与递减的性质,就可以O(1)求得这一区间土地长宽的最大最小值了

然后就可以做斜率优化的DP了。

Code

long long

坑点挺多的,调了一上午。先是x坐标移项之后是负的,并且栈溢出要判断,不然top减成负数了。

/*By QiXingzhi*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
#define int long long
const int MAXN = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
struct Land{ int w,h; }a[MAXN],A[MAXN];
int n,top,h,t,sta[MAXN],q[MAXN],f[MAXN];
inline bool comp(const Land& a, const Land& b){ return (a.h != b.h) ? a.h < b.h : a.w < b.w; }
inline double X(int i){ return -A[i+].w; }
inline double Y(int i){ return f[i]; }
inline double Slope(int i, int j){ return (double)(Y(i)-Y(j)) / (double)(X(i)-X(j)); }
main(){
n = r;
for(int i = ; i <= n; ++i) a[i].w = r, a[i].h = r;
sort(a+, a+n+, comp);
sta[++top] = ;
for(int i = ; i <= n; ++i){
while(top> && a[i].w >= a[sta[top]].w) --top;
sta[++top] = i;
}
for(int i = ; i <= top; ++i) A[i] = a[sta[i]];
for(int i = ; i <= top; ++i){
while(h<t && Slope(q[h],q[h+]) < A[i].h) ++h;
f[i] = f[q[h]] + A[q[h]+].w * A[i].h;
while(h<t && Slope(q[t],q[t-]) > Slope(q[t],i)) --t;
q[++t] = i;
}
printf("%lld", f[top]);
return ;
}

[USACO2008 Mar]土地购买的更多相关文章

  1. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  2. 1597: [Usaco2008 Mar]土地购买

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4023  Solved: 1470[Submit] ...

  3. 【斜率DP】bzoj1597: [Usaco2008 Mar]土地购买

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2474  Solved: 900[Submit][ ...

  4. 【BZOJ 1597】 [Usaco2008 Mar]土地购买 (斜率优化)

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3601  Solved: 1322 Descrip ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买( dp + 斜率优化 )

    既然每块都要买, 那么一块土地被另一块包含就可以不考虑. 先按长排序, 去掉不考虑的土地, 剩下的土地长x递增, 宽y递减 dp(v) = min{ dp(p)+xv*yp+1 } 假设dp(v)由i ...

  6. BZOJ 1597: [Usaco2008 Mar]土地购买【斜率优化+凸包维护】

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4989  Solved: 1847[Submit] ...

  7. bzoj1597[Usaco2008 Mar]土地购买 斜率优化dp

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5524  Solved: 2074[Submit] ...

  8. 【bzoj1597】[Usaco2008 Mar]土地购买

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3739  Solved: 1376[Submit] ...

  9. BZOJ 1597: [Usaco2008 Mar]土地购买 斜率优化

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MB Description 农夫John准备扩大他的农场,他正在考虑N ...

  10. 1597: [Usaco2008 Mar]土地购买 [ dp+斜率优化 ] 未完

    传送门 1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1979  Solved: 705[Subm ...

随机推荐

  1. xadmin后台页面的自定制

    01-自定制页面 注:最近找到了更好的解决办法:重写钩子函数版  https://www.cnblogs.com/pgxpython/p/10593507.html 需求背景:根据要实现的功能需求,x ...

  2. java 接口实现防盗门功能

    Door: package locker; public abstract class Door { public abstract void open(); public abstract void ...

  3. Python_数据类型的补充、集合set、深浅copy

    1.数据类型的补充 1.1 元组 当元组里面只有一个元素且没有逗号时,则该数据的数据类型与括号里面的元素相同. tu1 = ('laonanhai') tu2 = ('laonanhai') prin ...

  4. rbac权限+中间件

    1.权限组件rbac 1.什么是权限 1 项目与应用 2 什么是权限? 一个包含正则表达式url就是一个权限 who what how ---------->True or Flase 2.版本 ...

  5. mysql [assword expired

    mysql 5.6 在使用Navicat在其他机器上进行远程登录数据库时 会出现 password expired ,需要重新设置一下密码. SET PASSWORD FOR 'root'@'%' = ...

  6. 神经网络-SGD-2

    接上节: 3.梯度(gradient): def numerical_gradient(f,x): h=1e-5 grad=np.zeros_like(x) for index_x in range( ...

  7. Spring 的java 配置方式

    Java配置是Spring4.x推荐的配置方式,可以完全替代xml配置. 1.1@Configuration 和 @Bean Spring的Java配置方式是通过 @Configuration 和 @ ...

  8. git的简单使用(一些小操作,持续更新)

    第一次使用git的过程记录 参考了两个文章 菜鸟教程-git简明指南 阮一峰-常用git命令清单 git的几个工作区(此处参考了上面的两篇介绍) 简单步骤如下 git init 在当前目录建立工作区 ...

  9. bootstrap簡介

    bootstarp是最受歡迎的前端開發框架,可以開發數適用pc.平板電腦和手機的web應用,是基於html.css和javascript.只要學會bootstarp,就代表具有web的開發的中級水準.

  10. Vue命令行工具vue-cli

    前面的话 Vue.js 提供一个官方命令行工具,可用于快速搭建大型单页应用.该工具提供开箱即用的构建工具配置,带来现代化的前端开发流程.只需几分钟即可创建并启动一个带热重载.保存时静态检查以及可用于生 ...