题目分析:

一个很显然的同类项合并。注意到p的大小最大为100,考虑把模p意义下相同的求出来最后所有的减去没有质数的做矩阵快速幂即可。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ; const int mod = ; int n,m,q; int base[][]; int flag[maxn],prime[maxn/],num; int mat[][],Res[][],po[][]; void init(){
flag[] = ;
for(int i=;i<=m;i++){
if(!flag[i]) prime[++num] = i;
for(int j=;j<=num&&i*prime[j]<=m;j++){
flag[i*prime[j]] = ;
if(i%prime[j] == ) break;
}
}
for(int i=;i<=m;i++){
if(flag[i]) base[i%q][]++;
base[i%q][]++;
}
} void BuildMatrix(int now){
memset(mat,,sizeof(mat));
for(int i=;i<q;i++){
for(int j=;j<q;j++){
int nw = j-i;if(nw < ) nw += q;
mat[j][nw] += base[i][now];
}
}
} void fast_pow(int now){
if(now == ){
for(int i=;i<q;i++) for(int j=;j<q;j++) Res[i][j]=mat[i][j];
}else{
fast_pow(now/);
memset(po,,sizeof(po));
for(int k=;k<q;k++)
for(int i=;i<q;i++)
for(int j=;j<q;j++){
po[i][j] += (1ll*Res[i][k]*Res[k][j])%mod;
po[i][j] %= mod;
}
for(int i=;i<q;i++)for(int j=;j<q;j++)Res[i][j]=po[i][j];
if(now & ){
memset(po,,sizeof(po));
for(int k=;k<q;k++)
for(int i=;i<q;i++)
for(int j=;j<q;j++){
po[i][j] += (1ll*Res[i][k]*mat[k][j])%mod;
po[i][j] %= mod;
}
for(int i=;i<q;i++)for(int j=;j<q;j++)Res[i][j]=po[i][j];
}
}
} void work(){
BuildMatrix();
fast_pow(n);
int ans = Res[][];
BuildMatrix();
fast_pow(n);
ans -= Res[][];
if(ans < ) ans += mod;
printf("%d",ans);
} int main(){
scanf("%d%d%d",&n,&m,&q);
init();
work();
return ;
}

BZOJ4818 [SDOI2017] 序列计数 【矩阵快速幂】的更多相关文章

  1. [Sdoi2017]序列计数 [矩阵快速幂]

    [Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...

  2. BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)

    BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...

  3. 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)

    传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...

  4. [BZOJ4818][SDOI2017]序列计数(动规+快速幂)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 972  Solved: 581[Submit][Status ...

  5. [bzoj4818][Sdoi2017]序列计数_矩阵乘法_欧拉筛

    [Sdoi2017]序列计数 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=4818. 题解: 首先列出来一个递推式子 $f[i][0]$ ...

  6. bzoj4818 [Sdoi2017]序列计数

    Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望,这n个数中,至少有一个数是质数.Alice想知道,有多少个序 ...

  7. [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)

    题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...

  8. BZOJ4818 [SDOI2017]序列计数 【生成函数 + 快速幂】

    题目 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数中,至少有一个数是质数.Alice想知道,有多少个序列满足她的要求. ...

  9. 【bzoj4818】[Sdoi2017]序列计数 矩阵乘法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825132.html 题目描述 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的 ...

随机推荐

  1. 算法题:合并N个长度为L的有序数组为一个有序数组(JAVA实现)

    昨天面试被问到这道算法题,一时没有回答上来,今天思考了一下,参阅了网上的教程,做了一个JAVA版本的实现. 方案一: 新建一个N*L的数组,将原始数组拼接存放在这个大数组中,再调用Arrays.sor ...

  2. itoa()函数和atoi()函数详解

    C语言提供了几个标准库函数,可以将任意类型(整型.长整型.浮点型等)的数字转换为字符串. 以下是用itoa()函数将整数转换为字符串的一个例子:# include <stdio.h># i ...

  3. 阿里字体css代码引入方法

    1.第一步,选择自己想要的图标字体,添加入库. 2.选择下载代码. 3.我们可以发现,有如下的代码被下载下来了. 4.我们选择iconfont.css放到自己的文件夹中. 5.然后我们根据下载下来ht ...

  4. Day9 Python基础之函数基础(七)

    参考链接:https://www.cnblogs.com/yuanchenqi/articles/5828233.html 1.函数的定义 定义: 函数是指将一组语句的集合通过一个函数名封装起来,要想 ...

  5. 第一部分之简单字符串SDS(第二章)

    一,什么是SDS? 1.引出SDSC字符串:c语言中,用空字符结尾的字符数组表示字符串简单动态字符串(SDS):Redis中,用SDS来表示字符串.在Redis中,包含字符串值的键值对在底层都是由SD ...

  6. 使用HttpUtils完成Http Basic 认证

    调用声网(agora)的远程接口(Restful Api)时,对方需要使用Basic Auth的方式进行认证(需要输入用户名和密码). 一,使用Postman完成基于Basic Auth的Http认证 ...

  7. C#复习笔记(5)--C#5:简化的异步编程(异步编程的基础知识)

    异步编程的基础知识 C#5推出的async和await关键字使异步编程从表面上来说变得简单了许多,我们只需要了解不多的知识就可以编写出有效的异步代码. 在介绍async和await之前,先介绍一些基础 ...

  8. [转帖] bat方式遍历目录内的文件

    https://blog.csdn.net/qq_34924407/article/details/82781956 知识挺好用的 学习一下. #所有文件,包括子目录下的文件 @echo offcd ...

  9. 372.Definition of ListNode

    单项列表只能把后一个node中的所有数据copy到当前node再delete后一node. /** * Definition of ListNode * class ListNode { * publ ...

  10. WEX5中ajax跨域访问的几种方式

    1.使用jsonp方式 使用jsonp访问的话,前端需要把回调函数名传递给后端,后端执行完后也需要把回调函数传回给前端,默认情况下ajax自动生成一个回调函数名,后端可以通过String callba ...