【BZOJ5470】[FJOI2018]所罗门王的宝藏()
【BZOJ5470】[FJOI2018]所罗门王的宝藏()
题面
有\(n+m\)个变量,给定\(k\)组限制,每次告诉你\(a_i+b_j=c_k\),问是否有可行解。
题解
一道很呆的题目,我都不知道应该算什么类型了。。。
把行列拆开,对于一个限制\(x,y,c\),连边\(x\)行到\(y\)列,边权为\(c\)。
然后\(dfs\)一遍,如果存在环的话显然必须要环上存在合法解,那么随便令一个东西为\(x\),记录每个值为\(ax+b\)的形式,检查二分图是否合法。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 2020
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,K;
int a[MAX],b[MAX];bool vis[MAX];
struct Line{int v,next,w;}e[MAX];
int h[MAX],cnt=1;
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
bool Flag;
void dfs(int u)
{
vis[u]=true;if(!Flag)return;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(!vis[v])a[v]=-a[u],b[v]=w-b[u],dfs(v);
else if(a[v]+a[u]!=0||b[u]+b[v]!=w){Flag=false;return;}
}
}
int main()
{
int T=read();
while(T--)
{
n=read();m=read();K=read();cnt=1;
for(int i=1;i<=K;++i)
{
int x=read(),y=read(),d=read();
Add(x,y+n,d);Add(y+n,x,d);
}
Flag=true;
for(int i=1;Flag&&i<=n;++i)
if(!vis[i])a[i]=1,b[i]=0,dfs(i);
puts(Flag?"Yes":"No");
for(int i=1;i<=n+m;++i)vis[i]=false,h[i]=0;
}
return 0;
}
【BZOJ5470】[FJOI2018]所罗门王的宝藏()的更多相关文章
- bzoj5470 / P4578 [FJOI2018]所罗门王的宝藏
P4578 [FJOI2018]所罗门王的宝藏 设第$i$行上的值改变了$r1[i]$,第$j$列上的值改变了$r2[i]$ 显然密码$(i,j,c)=r1[i]+r2[j]$ 对于同一列上的两个密码 ...
- 洛谷P4578 [FJOI2018]所罗门王的宝藏(dfs)
题意 题目链接 Sol 对于每个询问\(x, y, c\) 从在\((x, y)\)之间连一条边权为\(c\)的双向边,然后就是解\(K\)个二元方程. 随便带个数进去找找环就行了 #include& ...
- 洛谷4578 & LOJ2520:[FJOI2018]所罗门王的宝藏——题解
https://www.luogu.org/problemnew/show/P4578 https://loj.ac/problem/2520 有点水的. 先转换成图论模型,即每个绿宝石,横坐标向纵坐 ...
- P4578 [FJOI2018]所罗门王的宝藏
传送门 考虑一个位置答案传递性,如果某个位置的红宝石转动确定了,那么会引起连锁反应: 如图,绿色的转动确定了,那么那两个蓝色的转动也确定了 自己手玩一下,发现如果有解那么随便找一个开始然后一路玩下去最 ...
- luoguP4578_ [FJOI2018]所罗门王的宝藏
题意 一个n*m的矩阵,初始值全为0,每一行每一列操作一次可以加1或者减1,问能否操作得到给定矩阵. 分析 行和列的分别的加减是可以相互抵消的,因此我们只需要考虑行的加和列的减. 对于给定矩阵每一个数 ...
- 题解【[FJOI2018]所罗门王的宝藏】
本题解同步于luogu emmm切了近年省选题来写题解啦qwq 该题较其他省选题较水吧(否则我再怎么做的出来 思路是图论做法,做法上楼上大佬已经讲的很清楚了,我来谈谈代码实现上的一些细节 \[\tex ...
- 【LOJ】 #2520. 「FJOI2018」所罗门王的宝藏
题解 发现似乎相当于问一个2000个元的方程组有没有解-- 然而我懵逼啊-- 发现当成图论,两个点之间连一条边,开始BFS,每个点的值赋成边权减另一个点的点权 如果一个环不合法那么肯定无解 代码 #i ...
- yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...
- [FJOI2018]所罗门的宝藏
大概是最后一篇题解,其实只是想颓废一下打个故事 据古代传说记载,所罗门王即是智慧的代表,又是财富的象征.他建立了强大而富有的国家,聚集了大批的黄金象牙和钻石,并把这些价值连城的珍宝藏在一个神秘的地方, ...
随机推荐
- 【kindle笔记】之 《鬼吹灯》-9-20
[kindle笔记]读书记录-总 9-20 日常吐槽 连着几天,基本是一口气读完了鬼吹灯. 想来,也算是阴差阳错了.本来是想看盗墓的,读了几页开头,心想坏了,拷贝错了,这是鬼吹灯-- 讲真的,每每读小 ...
- Docker -d : Running modprobe bridge nf_nat failed with message: exit status 1
nf_nat 是做什么用的 - DockOne.iohttp://dockone.io/question/1384 docker-py的配置与使用 - openxxs - 博客园http://www. ...
- Windows 激活的简单办法(能上网)
1. 之前很多机器上面总是提示我 盗版系统看起来挺不high的 2. 还是使用之前的办法来进行激活 slmgr (之前写过) /ipk <Product Key> 安装产品密钥(替换现 ...
- 微信小程序错误码参考大全
开发过程中,会遇到很多微信返回的状态码,鬼知道代表什么意思,现在好了,整理总结了一份状态码,方便大家. 转载:http://www.yiyongtong.com/archives/view-1856- ...
- C# Note19: Windows安装包制作实践
前言 最近在项目中需要不断更新新版本的software installer(软件安装包),于是便查阅资料,整理了下制作方法. NSIS安装包制作脚本 NSIS(Nullsoft Scriptable ...
- nodejs 利用zip-local模块压缩文件夹
var zipper = require("zip-local"); zipper.sync.zip("./folder").compress().save(& ...
- Json dump
json 模块提供了一种很简单的方式来编码和解码JSON数据. 其中两个主要的函数是 json.dumps() 和 json.loads() , 要比其他序列化函数库如pickle的接口少得多. 下面 ...
- kibana——es的批量操作
一·_mget: 1.创建的索引如下: 2.批量查询: #查询两个 GET _mget { "docs":[ { "_index":"testdb&q ...
- python数学第六天【指数族】
- java_manual的一点体会
最近看了一下Alibaba的java_manual1.4,看了感觉有很多好的标准,这里摘录一些,也帮助自己的代码更加规范化 先放一些MySQL的规范: 这里附上MySQL官网给的参考手册上的 关键字和 ...