【BZOJ5470】[FJOI2018]所罗门王的宝藏()
【BZOJ5470】[FJOI2018]所罗门王的宝藏()
题面
有\(n+m\)个变量,给定\(k\)组限制,每次告诉你\(a_i+b_j=c_k\),问是否有可行解。
题解
一道很呆的题目,我都不知道应该算什么类型了。。。
把行列拆开,对于一个限制\(x,y,c\),连边\(x\)行到\(y\)列,边权为\(c\)。
然后\(dfs\)一遍,如果存在环的话显然必须要环上存在合法解,那么随便令一个东西为\(x\),记录每个值为\(ax+b\)的形式,检查二分图是否合法。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 2020
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,K;
int a[MAX],b[MAX];bool vis[MAX];
struct Line{int v,next,w;}e[MAX];
int h[MAX],cnt=1;
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
bool Flag;
void dfs(int u)
{
vis[u]=true;if(!Flag)return;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(!vis[v])a[v]=-a[u],b[v]=w-b[u],dfs(v);
else if(a[v]+a[u]!=0||b[u]+b[v]!=w){Flag=false;return;}
}
}
int main()
{
int T=read();
while(T--)
{
n=read();m=read();K=read();cnt=1;
for(int i=1;i<=K;++i)
{
int x=read(),y=read(),d=read();
Add(x,y+n,d);Add(y+n,x,d);
}
Flag=true;
for(int i=1;Flag&&i<=n;++i)
if(!vis[i])a[i]=1,b[i]=0,dfs(i);
puts(Flag?"Yes":"No");
for(int i=1;i<=n+m;++i)vis[i]=false,h[i]=0;
}
return 0;
}
【BZOJ5470】[FJOI2018]所罗门王的宝藏()的更多相关文章
- bzoj5470 / P4578 [FJOI2018]所罗门王的宝藏
P4578 [FJOI2018]所罗门王的宝藏 设第$i$行上的值改变了$r1[i]$,第$j$列上的值改变了$r2[i]$ 显然密码$(i,j,c)=r1[i]+r2[j]$ 对于同一列上的两个密码 ...
- 洛谷P4578 [FJOI2018]所罗门王的宝藏(dfs)
题意 题目链接 Sol 对于每个询问\(x, y, c\) 从在\((x, y)\)之间连一条边权为\(c\)的双向边,然后就是解\(K\)个二元方程. 随便带个数进去找找环就行了 #include& ...
- 洛谷4578 & LOJ2520:[FJOI2018]所罗门王的宝藏——题解
https://www.luogu.org/problemnew/show/P4578 https://loj.ac/problem/2520 有点水的. 先转换成图论模型,即每个绿宝石,横坐标向纵坐 ...
- P4578 [FJOI2018]所罗门王的宝藏
传送门 考虑一个位置答案传递性,如果某个位置的红宝石转动确定了,那么会引起连锁反应: 如图,绿色的转动确定了,那么那两个蓝色的转动也确定了 自己手玩一下,发现如果有解那么随便找一个开始然后一路玩下去最 ...
- luoguP4578_ [FJOI2018]所罗门王的宝藏
题意 一个n*m的矩阵,初始值全为0,每一行每一列操作一次可以加1或者减1,问能否操作得到给定矩阵. 分析 行和列的分别的加减是可以相互抵消的,因此我们只需要考虑行的加和列的减. 对于给定矩阵每一个数 ...
- 题解【[FJOI2018]所罗门王的宝藏】
本题解同步于luogu emmm切了近年省选题来写题解啦qwq 该题较其他省选题较水吧(否则我再怎么做的出来 思路是图论做法,做法上楼上大佬已经讲的很清楚了,我来谈谈代码实现上的一些细节 \[\tex ...
- 【LOJ】 #2520. 「FJOI2018」所罗门王的宝藏
题解 发现似乎相当于问一个2000个元的方程组有没有解-- 然而我懵逼啊-- 发现当成图论,两个点之间连一条边,开始BFS,每个点的值赋成边权减另一个点的点权 如果一个环不合法那么肯定无解 代码 #i ...
- yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...
- [FJOI2018]所罗门的宝藏
大概是最后一篇题解,其实只是想颓废一下打个故事 据古代传说记载,所罗门王即是智慧的代表,又是财富的象征.他建立了强大而富有的国家,聚集了大批的黄金象牙和钻石,并把这些价值连城的珍宝藏在一个神秘的地方, ...
随机推荐
- 记一个JS树结构路径查找
var a=[ { "id" : "0000", "text" : "R1", "children" ...
- net core 小坑杂记之配置文件读取(不定期更新)
其实很早就想写了,原想等积累差不多了再写的,但是发现遇到一个当时记下效果会比较好,所以就不定期更新这个系列了,后面获取会整个整理一下. 此篇记载net core入门时踩的一些坑,网上教程太少了,也不规 ...
- .net WCF WF4.5 状态机、书签与持久化
想看源码请直接翻到最后,使用方式如下图 如果同时需要多个书签可以直接在需要的位置创建书签,会认为是同一个实例. 若需要实现的效果是同时需要好几个部门审核,那么只要在对应的位置同时创建多个书签即可. 编 ...
- js判断一个对象{}是否为空对象,没有任何属性
// js如何判断一个对象{}是否为空对象,没有任何属性 if (typeof model.rows === "object" && !(model.rows in ...
- spring mvc常用注解总结
1.@RequestMapping@RequestMappingRequestMapping是一个用来处理请求地址映射的注解(将请求映射到对应的控制器方法中),可用于类或方法上.用于类上,表示类中的所 ...
- Executor介绍
1.Executor介绍: Executor是mybatis的核心接口之一,其中定义了数据库操作的基本方法,它的子类结构图如下:这这张关系图中,涉及到了模板方法模式和装饰器模式.BaseExecuto ...
- Bootstrap 面板(Panels)
一.面板组件用于把 DOM 组件插入到一个盒子中.创建一个基本的面板,只需要向 <div> 元素添加 class .panel 和 class .panel-default 即可,如下面的 ...
- 对于修改jsp页面后页面不发生变化的解决方法
1.清除 Tomcat 6.0\work\Catalina\localhost 里面这个工程的内容:2.清除 Tomcat 6.0 webapps 里面的这个工程内容,然后重新部署,重启服务器:3.清 ...
- eclipse 部署项目
- CDH 6.0.1 集群搭建 「Before install」
从这一篇文章开始会有三篇文章依次介绍集群搭建 「Before install」 「Process」 「After install」 继上一篇使用 docker 部署单机 CDH 的文章,当我们使用 d ...