【XSY1528】azelso 概率&期望DP
题目大意
有一条很长很长的路(出题人的套路),你在\(0\)位置,你要去\(h\)位置。
路上有一些不同的位置上有敌人,你要和他战斗,你有\(p\)的概率赢。若你赢,则你可以走过去,否则你会死。还有很多个重生点。你每经过一个重生点有\(p\)的概率插旗。你死亡后你会在最后一个插旗的位置重生,然后该位置的旗子消失。如果没有旗子,则你在\(0\)位置重生。
求你走到目的地的期望路程。模\({10}^9+7\)
\(n\leq 100000\)
题解
这道题我用的式子和题解的不一样,最后推出来同一个式子。
设\(E_i=\)第\(i\)段的期望通过次数,\(f_i=\)结算完第\(i\)个事件后不回到第\(i\)个点直接到达终点的概率。
根据期望与概率的关系,有:\(E_i=\frac1{f_i}\)
设\(p=\frac{a_{i+1}}{b_{i+1}}\)(即下一个事件发生的概率)
若下一个事件是'\(X\)'(敌人):
\]
\]
\]
若下一个事件是'\(F\)'(重生点):
\]
(第一次成功+第一次插旗&失败&第二次成功+前两次插旗&失败&第三次成功...)
\]
\]
\]
然后把期望通过次数\(\times\)这段的长度加起来就好了。
时间复杂度:\(O(n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
ll p=1000000007;
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
ll c[100010],a[100010],b[100010],d[100010];
ll f[100010];
int main()
{
ll h,n;
scanf("%lld%lld",&h,&n);
int i;
char s[10];
for(i=1;i<=n;i++)
{
scanf("%s",s);
if(s[0]=='X')
c[i]=1;
else
c[i]=2;
scanf("%lld%lld%lld",&d[i],&a[i],&b[i]);
a[i]=a[i]*fp(b[i],p-2)%p;
}
f[n]=1;
for(i=n;i>=1;i--)
if(c[i]==1)
f[i-1]=f[i]*fp(a[i],p-2)%p;
else
f[i-1]=((1-a[i]+p)%p*f[i]%p+a[i])%p;
d[0]=0;
d[n+1]=h;
ll ans=0;
for(i=0;i<=n;i++)
ans=(ans+(d[i+1]-d[i])%p*f[i]%p+p)%p;
printf("%lld\n",ans);
return 0;
}
【XSY1528】azelso 概率&期望DP的更多相关文章
- (2016北京集训十)【xsy1528】azelso - 概率期望dp
北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$ ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp
题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...
- 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp
题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...
- Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp
一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...
- 概率期望dp
对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...
- Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)
题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...
- [BZOJ4832]抵制克苏恩(概率期望DP)
方法一:倒推,最常规的期望DP.f[i][a][b][c]表示还要再攻击k次,目前三种随从个数分别为a,b,c的期望攻击英雄次数,直接转移即可. #include<cstdio> #inc ...
- LightOJ 1030 Discovering Gold (概率/期望DP)
题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 ...
随机推荐
- js中布尔值为false的六种情况
下面6种值转化为布尔值时为false,其他转化都为true 1.undefined(未定义,找不到值时出现) 2.null(代表空值) 3.false(布尔值的false,字符串"false ...
- 什么是CLOS架构?
Clos架构,诞生于1952年,是由一位叫Charles Clos的人提出的,所以它并不是一个新的概念. 这个架构主要描述了一种多级电路交换网络的结构.Clos最大的优点就是对Crossbar结构的改 ...
- jquery判断<inpur type="checkbox" checked>是否被选择
建议使用 $('#isCheck').attr('checked') 这样的,利于判断 console.log($('#isCheck').prop('checked')); 可以看出prop当che ...
- Rimworld单人生存记
开局什么也没有,第一天按原来的墙造了个卧室差不多就完了,可见工作效率之低.花了三四天才种好水稻+草莓,做了短弓,挖了一些钢铁,造了燃料炉灶和屠宰台.第五天来了个人,我用短弓和他打,问题是远程最多打一下 ...
- 用python实现一个回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...
- 远程调用HBase出错,尝试10次后,报org.apache.hadoop.hbase.MasterNotRunningException错误
网上的解决方案挺多的,但都不适用于我今天下午碰到的情况. 环 境:HBase-0.90.3在debian 6下,客户端在windows上.我用之前的HBase服务器是没问题的,但重新解压并配置后就有问 ...
- 开发工具之Sublime编辑器
sublime是一款轻量级的编辑器,可以从官网上进行下载最新版本.它有很多使用并且强大的功能支持.例如:GOTO,package 等快捷操作.但有时候下载的版本不能进行安装package contro ...
- js根据ip自动获取地址(省市区)
HTML: <html> <head> <meta charset="utf-8"> <meta name="viewport& ...
- 便捷的ajax请求
为什么要做这个呢?如果后端给的数据不单有JSON字符串,还有对象呢?这个时候我们就要每个都处理(JSON.parse).万一后端又改了,所有都是对象呢?如此一来我们就需要对我们的ajax进行封装. 这 ...
- Day 5-2 类的继承和派生,重用
类的继承 派生 在子类中重用父类 组合 抽象类 定义: 继承指的是类与类之间的关系,是一种什么“是”什么的关系,继承的功能之一就是用来解决代码重用问题. 继承是一种创建新类的方式,在python中,新 ...