51nod1238 最小公倍数之和 V3(莫比乌斯反演)
题意
Sol
不想打公式了,最后就是求一个
\(\sum_{i=1}^n ig(\frac{N}{i})\)
\(g(i) = \sum_{i=1}^n \phi(i) i^2\)
拉个\(id2\)卷一下
#include<bits/stdc++.h>
#define int long long
#define LL long long
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10, INV2 = 500000004, INV6 = 166666668, B = 1e6;
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
void print(int x) {
if(!x) return ;
print(x / 10);
putchar(x % 10 + '0');
}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = 1ll * x * 10 + c - '0', c = getchar();
return x * f;
}
int g[MAXN], phi[MAXN], mu[MAXN], vis[MAXN], prime[MAXN], tot;
map<int, int> mp;
int sum(int N) {return mul(mul(N % mod, add(N, 1)), INV2);}
int sum2(int N) {return mul(mul(N % mod, mul(add(N, 1), mul(2, N) + 1)), INV6);}
int sum3(int N) {return mul(sum(N), sum(N));}
void sieve(int N) {
vis[1] = phi[1] = mu[1] = 1;
for(int i = 2; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, mu[i] = -1, phi[i] = i - 1;
for(int j = 1; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = 1;
if(i % prime[j]) phi[i * prime[j]] = phi[i] * phi[prime[j]], mu[i * prime[j]] = -mu[i];
else {mu[i * prime[j]] = 0; phi[i * prime[j]] = phi[i] * prime[j]; break;};
}
}
for(int i = 1; i <= N; i++) g[i] = add(g[i - 1], mul(phi[i], mul(i, i)));
}
LL dsieve(int N) {
if(N <= B) return g[N];
else if(mp[N]) return mp[N];
LL t = sum3(N);
for(int i = 2, nxt; i <= N; i = nxt + 1) {
nxt = N / (N / i);
add2(t, -mul(add(sum2(nxt), -sum2(i - 1)), dsieve(N / i)));
}
return mp[N] = t;
}
signed main() {
sieve(B);
int N = read(), ans = 0;
for(int i = 1, nxt; i <= N; i = nxt + 1) {
nxt = N / (N / i);
add2(ans, mul(add(sum(nxt), -sum(i - 1)), dsieve(N / i)));
}
print(ans);
return 0;
}
51nod1238 最小公倍数之和 V3(莫比乌斯反演)的更多相关文章
- 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛
题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...
- [51nod1238]最小公倍数之和V3
来自FallDream的博客,未经允许,请勿转载,谢谢. ----------------------------------------------------------------------- ...
- 51nod1238 最小公倍数之和 V3
又被这神仙题给坑爆了. 神仙题解. 一开始我把lcm变成ij/gcd然后按照常规套路去推,推到最后发现不是miu * Id而是miu · Id......这还搞鬼啊. 正解居然跟这个差不多,先转成求其 ...
- 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...
- [51Nod1238]最小公倍数之和 V3[杜教筛]
题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...
- 51nod1238. 最小公倍数之和 V3(数论)
题目链接 https://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题解 本来想做个杜教筛板子题结果用另一种方法过了...... 所谓 ...
- [51nod1238] 最小公倍数之和 V3(杜教筛)
题面 传送门 题解 懒了--这里写得挺好的-- //minamoto #include<bits/stdc++.h> #define R register #define ll long ...
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
随机推荐
- MySQL如何使用索引
初始化测试数据 创建一个测试用的表 create table dept(id int primary key auto_increment , deptName varchar(32) not nul ...
- puppetdb搭建
puppetdb搭建 在agent端跑puppet agent -t 正常的情况下,安装puppetdb 部署postgresql数据库 部署puppetdb 建立puppetserver与puppe ...
- SpringCache学习实践
1. SpringCache学习实践 1.1. 引用 <dependency> <groupId>org.springframework.boot</groupId> ...
- Core统一日志处理
新建一个Core的Web项目,然后创建相关文件等 添加一个处理错误的类库ErrorMiddleware 下面是该类库的代码 public class ErrorMiddleware { stati ...
- 实现文件上传 你get了吗???
实现文件上传: 1.jar包 需要用到两个jar包: commons-io.jar commons-fileupload.jar 下载地址:https://mvnrepository.com/ 2.f ...
- 【Hadoop】2、Hadoop高可用集群部署
1.服务器设置 集群规划 Namenode-Hadoop管理节点 10.25.24.92 10.25.24.93 Datanode-Hadoop数据存储节点 10.25.24.89 10.25.24. ...
- The EntityFramework package is not installed on project
VS2015 使用EF的code first 报错 Get-Package : 找不到与参数名称“ProjectName”匹配的参数.所在位置 packages\EntityFramework.6.1 ...
- Django-用户模块与权限系统相关
Django的用户模块与权限系统 Django的用户系统都提供哪些功能: 提供用户模块(User Model) 权限验证(默认添加已有模块的增加删除修改权限) 用户组与组权限功能 用户鉴权与登录功能 ...
- hashMap的hashCode() 和equal()的使用
hashMap的hashCode() 和equa()的使用 在java的集合中,判断两个对象是否相等的规则是: ,判断两个对象的hashCode是否相等 如果不相等,认为两个对象也不相等,完毕 如果相 ...
- [Java Plasterer] Java Components 3:Java Enum
Writer:BYSocket(泥沙砖瓦浆木匠) 微博:BYSocket 豆瓣:BYSocket Reprint it anywhere u want. Written In The Font Whe ...