B. Divisiblity of Differences
B. Divisiblity of Differences
time limit per test1 second
memory limit per test512 megabytes
inputstandard input
outputstandard output
You are given a multiset of n integers. You should select exactly k of them in a such way that the difference between any two of them is divisible by m, or tell that it is impossible.
Numbers can be repeated in the original multiset and in the multiset of selected numbers, but number of occurrences of any number in multiset of selected numbers should not exceed the number of its occurrences in the original multiset.
Input
First line contains three integers n, k and m (2 ≤ k ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — number of integers in the multiset, number of integers you should select and the required divisor of any pair of selected integers.
Second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109) — the numbers in the multiset.
Output
If it is not possible to select k numbers in the desired way, output «No» (without the quotes).
Otherwise, in the first line of output print «Yes» (without the quotes). In the second line print k integers b1, b2, ..., bk — the selected numbers. If there are multiple possible solutions, print any of them.
如果集合中两两之差能被m整除,那么它们%m之后的余数应该相等。
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<set>
#include<map>
#include<stack>
#include<cstring>
#define inf 2147483647
#define For(i,a,b) for(register int i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.11.1
using namespace std;
int n,k,m;
int a[];
int b[];
int l;
int cnt; void in(int &x)
{
int y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=(x<<)+(x<<)+c-'',c=g();
x*=y;
}
void o(int x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
}
int main()
{
in(n),in(k),in(m);
For(i,,n)
{
in(a[i]);
b[a[i]%m]++;
if(cnt<b[a[i]%m])
{
cnt=b[a[i]%m];
l=a[i]%m;
}
}
if(cnt<k)
{
puts("No");
exit();
}
puts("Yes");
For(i,,n)
{
if(a[i]%m==l)
{
k--;
o(a[i]),p(' ');
}
if(k==)
break;
}
return ;
}
B. Divisiblity of Differences的更多相关文章
- Codeforces B. Divisiblity of Differences
B. Divisiblity of Differences time limit per test 1 second memory limit per test 512 megabytes input ...
- codeforces #441 B Divisiblity of Differences【数学/hash】
B. Divisiblity of Differences time limit per test 1 second memory limit per test 512 megabytes input ...
- Codeforces 876B:Divisiblity of Differences(数学)
B. Divisiblity of Differences You are given a multiset of n integers. You should select exactly k of ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad) B. Divisiblity of Differences
http://codeforces.com/contest/876/problem/B 题意: 给出n个数,要求从里面选出k个数使得这k个数中任意两个的差能够被m整除,若不能则输出no. 思路: 差能 ...
- Codeforces 876B Divisiblity of Differences:数学【任意两数之差为k的倍数】
题目链接:http://codeforces.com/contest/876/problem/B 题意: 给你n个数a[i],让你找出一个大小为k的集合,使得集合中的数两两之差为m的倍数. 若有多解, ...
- CodeForces - 876B Divisiblity of Differences
题意:给定n个数,从中选取k个数,使得任意两个数之差能被m整除,若能选出k个数,则输出,否则输出“No”. 分析: 1.若k个数之差都能被m整除,那么他们两两之间相差的是m的倍数,即他们对m取余的余数 ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad)
A. Trip For Meal 题目链接:http://codeforces.com/contest/876/problem/A 题目意思:现在三个点1,2,3,1-2的路程是a,1-3的路程是b, ...
- Codeforces Round #441 (Div. 2)【A、B、C、D】
Codeforces Round #441 (Div. 2) codeforces 876 A. Trip For Meal(水题) 题意:R.O.E三点互连,给出任意两点间距离,你在R点,每次只能去 ...
- Codeforces Round #441 (Div. 2)
Codeforces Round #441 (Div. 2) A. Trip For Meal 题目描述:给出\(3\)个点,以及任意两个点之间的距离,求从\(1\)个点出发,再走\(n-1\)个点的 ...
随机推荐
- mysql5.7设置简单密码报错ERROR 1819 (HY000): Your password does not satisfy the current policy requirements
注:本文来源于< mysql5.7设置简单密码报错ERROR 1819 (HY000): Your password does not satisfy the current policy r ...
- Confluence 6 workbox 包含从 Jira 来的通知
如果你的 Confluence 站点链接了一个 Jira 应用,你可以包含从 Jira 应用来的通知,例如 Jira 软化或 Jira 服务器桌面. 希望包含有从 Jira 应用来的通知: 你的 Ji ...
- js之DOM对象一
一.什么是HTML DOM HTML Document Object Model(文档对象模型) HTML DOM 定义了访问和操作HTML文档的标准方法 HTML DOM 把 HTML 文档呈现 ...
- LeetCode(92):反转链表 II
Medium! 题目描述: 反转从位置 m 到 n 的链表.请使用一趟扫描完成反转. 说明:1 ≤ m ≤ n ≤ 链表长度. 示例: 输入: 1->2->3->4->5-&g ...
- WinHex数据恢复笔记(一)
WinHex数据恢复功能强大,可以从硬件簇上扇区进行数据扫描恢复.首先对winhex的各个功能介绍.之后对实例记录一个Word文档删除后进行恢复. 1.WinHex数据恢复软件的编辑区输入与其他普通文 ...
- cf965C 二分+推方程
#include<bits/stdc++.h> using namespace std; #define ll long long ll n,k,M,D,anss; ll calc(ll ...
- 一个小时就能理解Java的NIO必须掌握这三大要素!
同步与阻塞 同步和异步是针对应用程序和内核的交互而言的. 同步:执行一个操作之后,进程触发IO操作并等待(阻塞)或者轮询的去查看IO的操作(非阻塞)是否完成,等待结果,然后才继续执行后续的操作. 异步 ...
- 【转】运维DBA的4大纪律9项注意
朋友们调侃说,运维是个把脑袋别在裤腰带上的活,更有人说,运维是个把脑袋别在他人裤腰带上的活,苦劳没人认,有锅就有得背! 测试的同学说,“吃瓜群众很难感知运维背后的付出,倒是出了事情更能体现我们的专业性 ...
- linux的systemctl服务及其使用
一.systemd 系统初始化程序,系统开始的第一个进程,PID为1 二.systemctl命令 systemctl list-units ##列出当前系统服务的状态 systemctl lis ...
- 图像特征的提取(gaussian,gabor,frangi,hessian,Morphology...)及将图片保存为txt文件
# -*- coding: utf-8 -*- #2018-2-19 14:30:30#Author:Fourmi_gsj import cv2 import numpy as np import p ...